ON MINIMAL NON-ELEMENTARY LIE ALGEBRAS

DAVID A. TOWERS

Department of Mathematics and Statistics
Lancaster University
Lancaster LA1 4YF
England
d.towers@lancaster.ac.uk

Abstract

The class of minimal non-elementary Lie algebras over a field F are studied. These are classified when F is algebraically closed and of characteristic different from 2, 3. The solvable algebras in this class are also characterised over any perfect field.

Mathematics Subject Classification 2000: 17B05, 17B20, 17B30, 17B50.
Key Words and Phrases: Lie algebras, solvable, Frattini ideal, elementary algebras.

1 Introduction

Groups and Lie algebras that just fail to have a particular property have been studied extensively in the hope of gaining some insight into just what makes the group or algebra have that property. They are also useful in constructing induction proofs. In group theory such groups are sometimes called critical.

A Lie algebra L is called elementary if the Frattini ideal, $\phi(S)$, of each of its subalgebras S, is trivial. It is called minimal non-elementary if each of
its proper subalgebras is elementary but it is not elementary itself. These al-
gebras were first studied by Towers in [5], and recently Stagg and Stitzinger
([3]) have classified such algebras when L^2 is nilpotent and the ground field
is algebraically closed. In section 2 we extend this result first to any solvable
Lie algebra over an algebraically closed field, and then show that there are
no such non-solvable Lie algebras provided that the underlying field also
has characteristic different from 2, 3. The final result characterises all min-
imal non-elementary solvable Lie algebras over a perfect field. An example
is given to show that there are minimal non-elementary Lie algebras over
the real field that are not of the type described in the result of Stagg and
Stitzinger.

Throughout, L will denote a finite-dimensional Lie algebra over a field
F. Algebra direct sums will be denoted by \oplus, whereas direct sums of the
vector space structure alone will be denoted by $\dot{+}$.

2 The results

We say that L is an E-algebra if $\phi(S) \subseteq \phi(L)$ for every subalgebra S of L.

Lemma 2.1 Let L be a minimal non-elementary Lie algebra over a perfect
field F. Then L is solvable if and only if L^2 is nilpotent.

Proof. Clearly L must be an E-algebra and so the result follows from [7,
Corollary 2.2]. \square

The above lemma easily yields the following generalisation of [3, Theo-
rem].

Theorem 2.2 Let L be a solvable Lie algebra over an algebraically closed
field F. Then L is minimal non-elementary if and only if L has a basis
x, y, z with multiplication $[x, y] = \alpha y + z$, $[x, z] = \alpha z$ and $[y, z] = 0$, where
$\alpha \in F$.

The algebra L is called an A-algebra if all of its nilpotent subalgebras
are abelian. Then the following result is a special case of [2, Proposition 2].

Theorem 2.3 (Premet and Semenov) Let L be a non-solvable A-algebra
over an algebraically closed field of characteristic different from 2, 3. Then
$L \cong (S_1 \oplus \ldots \oplus S_n)\dot{+}R$, where $n \geq 1$, $S_i \cong sl_2(F)$ for $1 \leq i \leq n$ and R is
the (solvable) radical of L.
Theorem 2.4 Let L be any Lie algebra over an algebraically closed field F of characteristic different from 2, 3. Then L is minimal non-elementary if and only if L has a basis x, y, z with multiplication $[x, y] = \alpha y + z$, $[x, z] = \alpha z$ and $[y, z] = 0$, where $\alpha \in F$.

Proof. Suppose that L is minimal non-elementary and not solvable. Clearly L is an A-algebra and so has the form given in Theorem 2.3. Clearly $R \neq 0$, since, otherwise, L is elementary. Choose a basis e, f, h for S_i such that $[h, e] = 2e$, $[h, f] = -2f$, $[e, f] = h$ and consider the subalgebra $B = Fe + Fh + R$ of L. This is clearly solvable and elementary, and hence B^2 is abelian, by [7, Corollary 2.2] and [5, Lemma 3.1]. It follows that $[e, R^2] = [e, [h, R]] = 0$. Similarly we find that $[f, R^2] = [f, [h, R]] = 0$. Use of the Jacobi identity then shows that $[h, R^2] = [h, [h, R]] = 0$, whence $[S_i, R^2] = [S_i, [h, R]] = 0$. Using the Jacobi identity again gives that $[Fe + Ff, R] \subseteq [h, R]$, whence $[S_i, [S_i, R]] = 0$.

Thus,
\[
[S_i, R] = [[S_i, S_i], R] = [[S_i, R], S_i] + [R, S_i], S_i] = 0.
\]

This holds for all $1 \leq i \leq n$, and so L is elementary, by [4, Theorem 4.8], a contradiction. The result follows from Theorem 2.2. □

The abelian socle, $\text{Asoc}L$, of L is the sum of its minimal abelian ideals.

Theorem 2.5 Let L be a solvable Lie algebra over a perfect field F. Then L is minimal non-elementary if and only if

(i) $L = L^2 \times Fx$, where L^2 is abelian and $0 \neq \phi(L) = \text{Asoc}L$ is the biggest ideal of L properly contained in L^2, or

(ii) L is the three-dimensional Heisenberg algebra.

Proof. As before, L is an E-algebra and so L^2 is nilpotent, by [7, Corollary 2.2]. Suppose that L is not nilpotent. Then $\phi(L) \neq L^2$ (see, for example, [4, section 5]), so there is a maximal subalgebra M of L such that $L = L^2 + M$. Choosing B to be a subalgebra minimal with respect to the property that $L = L^2 + B$ we have $L^2 \cap B \leq \phi(B) = 0$ (see [4, Lemma 7.1]), so $L = L^2 \oplus B$ and B is abelian. Moreover, L^2 is nilpotent and elementary, and so abelian.

Let A be a minimal abelian ideal of L and suppose that $A \nsubseteq \phi(L)$. Then there is a maximal subalgebra M of L with $A \nsubseteq M$, so $L = A + M$. Since M is elementary, $\phi(M) = 0$ and so $\phi(L) \subseteq A$, which yields $\phi(L) = 0$, a contradiction. Hence $\text{Asoc}L \subseteq \phi(L)$. Let K be an ideal of L with $\text{Asoc}L \subseteq$
$K \subseteq L^2$. If $K \neq L^2$ then $K + B$ is elementary and so splits over $\text{Asoc} L$: say, $K + B = \text{Asoc} L + C$. But now

$$[L, C \cap L^2] = [B, C \cap L^2] \subseteq [\text{Asoc} L + C, C \cap L^2] \subseteq C \cap L^2,$$

so $C \cap L^2$ is an ideal of L, whence $\text{Asoc} L \cap C \neq 0$, a contradiction. It follows that $0 \neq \phi(L) = \text{Asoc} L$ is the biggest ideal of L properly contained in L^2.

Now suppose that $\dim B > 1$ and let $x \in B$. Then $C = L^2 + Fx$ is elementary and so $L^2 \subseteq N(C) = \text{Asoc}(C)$ by Theorem 7.4 of [4], and L^2 is completely reducible as an Fx-module. Write $L^2 = \bigoplus_{i=1}^r C_i$, where C_i is an irreducible Fx-module for $1 \leq i \leq r$. Then the minimum polynomial of the restriction of $ad x$ to C_i is irreducible for each i, and so $\{(ad x)|_{L^2} : x \in B\}$ is a set of commuting semisimple operators. Let Ω be the algebraic closure of F and put $L_{\Omega} = L \otimes_F \Omega$, and so on. Then $\phi(L_{\Omega}) = \phi(L)_{\Omega}$, by [1]. Also, as F is perfect, $\{(ad x)|_{L^2_{\Omega}} : x \in B_{\Omega}\}$ and $\{(ad x)|_{\phi(L)_{\Omega}} : x \in B_{\Omega}\}$ are sets of simultaneously diagonalizable linear maps. Let $f_1, \ldots, f_s, c_1, \ldots, c_t$ be a basis of these common eigenvectors, where $f_i \in \phi(L)_{\Omega}$, $c_i \in L^2_{\Omega} \setminus \phi(L)_{\Omega}$. But now

$$M = \bigoplus_{i=2}^s Ff_i \bigoplus_{t=1}^t Fc_i + B_{\Omega}$$

is a maximal subalgebra of L_{Ω} and $\phi(L)_{\Omega} \not\subseteq M$, a contradiction. Hence $\dim B = 1$ and we have (i).

If L is nilpotent then (ii) holds as in [7, Theorem 4.5]. The converse holds as in [7, Theorem 4.5] □

Note that any algebra satisfying the conditions specified in Theorem 2.5 (i) are Lie algebras. There are also algebras satisfying these conditions which have dimension greater than three, unlike those described in Theorem 2.2, as the following example shows.

Example 2.1 Let L be the five dimensional Lie algebra over the real field with basis e_1, e_2, e_3, e_4, e_5 and multiplication given by $[e_1, e_2] = -[e_2, e_1] = e_3 + e_4$, $[e_1, e_3] = -[e_3, e_1] = -e_2 + e_5$, $[e_1, e_4] = -[e_4, e_1] = e_5$, $[e_1, e_5] = -[e_5, e_1] = -e_4$, all other products being zero. Then it is straightforward to check that $L^2 = \mathbb{R}e_2 + \mathbb{R}e_3 + \mathbb{R}e_4 + \mathbb{R}e_5$ is abelian, and that L has the unique minimal ideal $\mathbb{R}e_4 + \mathbb{R}e_5 = \phi(L)$. Over the complex field this is an elementary supersolvable Lie algebra.
References

