Joint modelling of goals and bookings in association football matches

Andrew Titman
Debbie Costain Gareth Ridall Kris Gregory

Lancaster University

September 4, 2012
Overview

- Data
- Counting process model for goals and bookings
- Modelling effects of covariates and game events
- Results
- Validation via live spread betting
Data

- BBC live text reports on 1,864 Premier League and Championship games from the 2009/10 and 2010/11 seasons
 - Data on time of goals, yellow cards and red cards to nearest second in relation to time since kickoff (or time since half-time)
 - e.g. away yellow card at 32:36, home goal at 93:23.
- Additional covariate information:
 - Match referee
 - Bookmaker’s prior match outcome odds
 - Bookmaker’s prior odds of at least 3 goals in the game.
Aims

- Determine the factors affecting incidence of bookings within a match
- Determine the extent to which bookings affect goal scoring intensities
- Allow dynamic prediction of match outcomes
- Extending previous work on modelling football
 - e.g. Dixon and Robinson (1998): Poisson birth process models for goals.
Models for football

The processes of accrual of goals, yellow cards and red cards can be modelled as counting processes

\[X_1(t) = \#\{\text{Home goals by time } t\} \]
\[X_2(t) = \#\{\text{Away goals by time } t\} \]
\[X_3(t) = \#\{\text{Home yellow cards by time } t\} \]
\[X_4(t) = \#\{\text{Away yellow cards by time } t\} \]
\[X_5(t) = \#\{\text{Home straight red cards by time } t\} \]
\[X_6(t) = \#\{\text{Away straight red cards by time } t\} \]
\[X_7(t) = \#\{\text{Home reds from 2nd offence by time } t\} \]
\[X_8(t) = \#\{\text{Away reds from 2nd offence by time } t\} \]
Models for football

Joint modelling of goals and bookings in association football matches
Models for football

- Associated intensity for each counting process:

\[
\lambda_j(t; \mathcal{F}_{t-}, z) = \lim_{\delta t \downarrow 0} \frac{\mathbb{E}\{X_j(t + \delta t) - X_j(t) | \mathcal{F}_{t-}, z\}}{\delta t}
\]

\(\mathcal{F}_{t-}\) denotes filtration of history of whole multivariate process \(X(t)\) up to \(t-\).

- Simplifying (Markov) assumption:

\[
\lambda_j(t; \mathcal{F}_{t-}, z) = \lambda_j(t; X(t-), z)
\]
Modelling the effect of game events

- We make a proportional intensities assumption where

\[\lambda_j(t; X(t^-), z) = \lambda_j(t) \exp \{ f(X(t^-), z; \beta) \} \]

for some function \(f \) with associated regression parameters \(\beta \) including time fixed covariates \(z \)

- For instance, we allow goal scoring rates to depend on the current score line, creating separate factor levels e.g. \(I(X_1(t) = X_2(t)), I(X_1(t) = 1 \cap X_2(t) = 0), I(X_1(t) > 1 \cap X_1(t) > X_2(t)) \) etc.

- Baseline intensities taken to be of Weibull form
 - All event intensities increase as match progresses
Accounting for team ability

- Goal scoring rates will clearly depend on relative team abilities.
- Use bookmaker’s prior odds of match outcomes:
 - To inform both goal scoring rates and booking rates.
 - Included in model as B-spline functions of the implied log \(\log \{P(\text{Home Win})/P(\text{Away Win})\}\).
 - Bookmaker’s odds of at least 3 goals in a game used to further adjust rates.
Results: Goal scoring rates

- Strong dependence of team ability on scoring rates.
- Scoring rate of both teams decreases once there is a score draw (by 13% for the home team and 27% for the away team compared to their rates when it is 0-0).
- Some evidence that teams ‘sit back’ once they are ahead
- No direct effect of yellow cards on goal scoring rates
- Red cards:
 - Home Red card \rightarrow 60% increase in away team’s scoring rate, 17% decrease in home team scoring rate.
 - Away Red card \rightarrow 69% increase in home team’s scoring rate, 42% decrease in away team scoring rate.
 - Handicap for away team appears more severe.
Results: Booking rates

- Significant dependence of team ability on booking rates

![Graph showing home bookings intensity ratio against log(P(HW)/P(AW))]

![Graph showing away bookings intensity ratio against log(P(HW)/P(AW))]

Andrew Titman
Lancaster University

Joint modelling of goals and bookings in association football matches
Results: Booking rates

- No substantial dependence of score line on bookings after accounting for team ability.
- Escalation effects:
 - A team’s booking rate increases by 25% if the opposing team get a yellow card.
 - A yellow card to any player on a team more than doubles the hazard of a straight red card to any other player on that team. (ie. referees rarely give a red card as the first bookable offence in the game)
 - Hazard of red cards from a second offence is close to proportional to the number of yellow cards already awarded to that team.
- Lower rate of bookings in the Championship than Premier League (11% lower)
Spread betting allows one to bet on a range of match outcomes:
- e.g. total number of goals
- e.g. total booking points (yellow card = 10, red card = 25, yellow + red card = 35)
- e.g. goal difference

Can either “buy” :a bet that the outcome will be higher than the available “price”

or “sell” : a bet that the outcome will be lower than the available “price”
Betting strategy

- Broadly want to maximize expected pay out
- but allow for some degree of risk aversion: i.e. how much more do we prefer a £1 gain with no risk to a £1 expected gain with variance of 1.
- Here consider a utility function for the gain:

\[U(G(X; A)) = 1 - \exp\{-\kappa G(X; A)\} \]

where \(\kappa > 0 \) corresponds to risk aversion and \(G(X; A) \) is the gain associated with match outcome \(X \) and betting action \(A \).

- Choose the action \(A \) (e.g. buy or sell \(x \)) that maximizes the expected utility
- Model predictions computed through simulation at each minute of the match
Joint modelling of goals and bookings in association football matches

Andrew Titman
Lancaster University
Overall performance

- 93 matches monitored (from sportingindex.com) and betting strategy applied retrospectively (i.e. **no actual money wagered**)

<table>
<thead>
<tr>
<th>Market</th>
<th>Overall gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal Difference</td>
<td>-2.3</td>
</tr>
<tr>
<td>Total Goals</td>
<td>-18.2</td>
</tr>
<tr>
<td>Total Bookings</td>
<td>38.9</td>
</tr>
<tr>
<td>Booking Pt Difference</td>
<td>14.8</td>
</tr>
<tr>
<td>Total</td>
<td>32.7</td>
</tr>
</tbody>
</table>

- Most gain is from bookings markets
- Poorer performance for total goals
- Larger variation in outcomes for individual games
Further Issues

- Referee effects: There is inconsistency across individual referees in the number of cards issued and evidence this is already accounted for in bookmaker’s prices.

- Team characteristics, independent of ability, also important (aggressiveness measured by number of fouls in previous matches).

- High profile matches have higher booking rates (e.g. matches between top 5 Premier League clubs).

- Further work
 - Better model for goal scoring rates, e.g. take into account individual club’s past scoring record.
 - More realistic utility functions, e.g. log-utility, taking into account total wealth at particular time.

Non-Markov effects

- Red cards (and to a lesser extent yellow cards) are often associated with a free-kick or penalty implying a goal scoring opportunity for the opposing team.

- Subsequent effect of the red card is then a mixture of short term effects related to the penalty and persistent effects.

- Ideally would have data on whether the booking resulted in a direct goal scoring opportunity and would model this as a separate event.

- To investigate this can create a time dependent covariate:
 - Takes value 1 for three minutes after a red card, 0 otherwise.

- Then look at the interaction of the this covariate and # Red cards.
Referee Effects: Premier League

Premier League referees

Effect

-1.0 \quad -0.5 \quad 0.0 \quad 0.5

M Halsey
C Foy
M Clattenburg
P Walton
L Probert
M Jones
K Friend
H Webb
A Wiley
P Dowd
M Oliver
A Marriner
A Taylor
S Atwell
M Atkinson
M Dean
L Mason
S Bennett
Referee Effects: Championship

Championship referees

Effect

-1.0 -0.5 0.0 0.5

G Hegley
C Boyeson
M Haywood
D Deadman
C Webster
E Ilderton
A Bates
S Mathieson
K Wright
N Miller
M Oliver
A Woolmer
D'Urso
D Whitestone
G Salisbury
K Hill
K Friend
K Stroud

Andrew Titman
Lancaster University
Joint modelling of goals and bookings in association football matches