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1. Introduction

One of the bedrock theorems of mathematics is the statement that a real polynomial

of degree n has at most n real zeros. Probably the best-known proof is the algebraic one, by

factorization. But there is also a pleasant analytic proof, by deduction from Rolle’s theorem.

A slightly different question is how many positive zeros a polynomial has. Here the

basic result is known as “Descartes’ rule of signs”. It says that the number of positive zeros is

no more than the number of sign changes in the sequence of coefficients. Descartes included

it in his treatise La Géométrie, which appeared in 1637. It can be proved by a method based

on factorization, but, again, just as easily by deduction from Rolle’s theorem.

There are generalizations of Descartes’ rule providing more specific information, still

for polynomials. The Budan-Fourier theorem gives an upper bound for the number of zeros

of a polynomial in any interval (a, b), and Sturm’s theorem gives, in principle, a method for

determining the exact number of zeros in such an interval. Both theorems are quite laborious

to apply in practice. For an account of them, see [Hen, chapter 6] or [Hou, chapter 2].

Here we will be concerned with generalizations of a different sort, to wider classes of

functions. First, consider a generalized polynomial, that is, a function of the form

f(t) =
n∑

j=1

ajt
pj , (1)

where the pj can be any real numbers (listed in descending order). To ensure that such a

function is defined in real numbers, we must restrict t to the positive reals.

The substitution t = ex (which, of course, does not alter the number of zeros) trans-

forms f(t) into the function

F (x) =
n∑

j=1

aje
pjx (x ∈ R). (2)

Functions of this sort are called (generalized) Dirichlet polynomials. Note that the further

substitution bj = epj expresses F (x) in the form
∑n

j=1 ajb
x
j (now with the bj in descending

order). The special case bj = 1/j gives F (x) =
∑n

j=1 aj/j
x: such functions are called

“ordinary” Dirichlet polynomials (and, if continued to form an infinite series, a Dirichlet
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series). However, we will drop the word “generalized” when speaking of functions of the

form (2).

By adopting a proof based on Rolle’s theorem rather than factorization, Laguerre [La]

showed that Descartes’ rule of signs extends to functions of both these types. Furthermore,

under certain restrictions, similar statements apply with the sequence (aj) replaced by the

sequence of its partial sums (a1 + · · · + aj). These are powerful variants of Descartes’ rule,

because in some cases the new sequence has far fewer sign changes than the original one.

These results of Laguerre were reproduced in the form of exercises, and partly with

new methods, in [P-Sz], Part V, chapter 1. However, they have not received much attention

in more recent texts: they seem to be in danger of falling into neglect. It is hoped that this

article will do something to restore awareness of these interesting results and methods.

I am grateful to Peter Walker for directing me to the relevant literature and to Adam

McBride and the Math. Gazette referee for helpful comments.

2. Rolle’s theorem and zeros

We start by stating Rolle’s theorem. The formal proof is to be found in any text on

analysis, but the idea is highly convincing from a picture!

Rolle’s theorem. Suppose that a function f is differentiable at all points of an interval

[a, b], and that f(a) = f(b). Then there is at least one point t0 in the open interval (a, b)

such that f ′(t0) = 0.

Note that this says that t0 is strictly between a and b: this is critical for all the

applications that follow. In particular, there is an immediate application to counting zeros

of a function. If a (differentiable) function f has n distinct zeros on some interval I, then its

derivative f ′ must have at least n − 1 zeros there, since it has (at least) one in each of the

n− 1 gaps between the zeros of f .

Here it was implied that the zeros are simply counted as points in the obvious sense.

However, without much extra trouble, one can extend it to the case where the zeros are

counted with their orders, which is what we will be doing in the theorems to follow. (Readers

can ignore this refinement without serious loss; those so inclined should read Theorem 2.2

and go to section 3.)

Let f be a function possessing all derivatives (we shall only be considering functions
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of this type). One says that f has a zero of of order (or multiplicity) k at the point t0 if

f(t0) = f ′(t0) = . . . = f (k−1)(t0) = 0 and f (k)(t0) 6= 0.

Note that f ′ then has a zero of order k− 1 at t0; this even works for k = 1 if a “zero of order

0” means a point that is not a zero! A zero of order 1 is also called a simple zero.

Given a function f and an interval I, we shall denote by Z(f, I) the number of zeros

of f in I, counted with their orders. In other words, if there are n zeros, with orders kr

(1 ≤ r ≤ n), then Z(f, I) = k1 + · · · + kn. We will just write Z(f) when I is the whole

domain of f (which will usually be either the whole real line or (0,∞)). The consequence of

Rolle’s theorem mentioned above can now be strengthened, as follows.

Proposition 2.1. For any function f and interval I, we have Z(f ′, I) ≥ Z(f, I)− 1.

Proof. Let f have a zero of order kr at xr (1 ≤ r ≤ n). Then f ′ has a zero of order

kr − 1 at xr (with the above comment about order 0): these add up to

n∑
r=1

(kr − 1) = Z(f, I)− n.

By Rolle’s theorem, f ′ also has at least n − 1 zeros in the gaps between the points xr.

Together, these two facts give Z(f ′, I) ≥ Z(f, I)− 1. �

The basic theorem on zeros of polynomials now follows very easily.

Theorem 2.2. Let f be a polynomial of degree n. Then Z(f) ≤ n.

Proof. Induction on n. A polynomial of degree 0 is a non-zero constant, so has no

zeros. In other words, the statement is true when n = 0. Assume now that the statement

is true for a certain value of n, and let f be a polynomial of degree n + 1. Then f ′ is a

polynomial of degree n, so, by the induction hypothesis, Z(f ′) ≤ n. By Proposition 2.1,

Z(f) ≤ n + 1. So the statement is true for n + 1, as required. �

As a first excursion beyond polynomials, a similar proof (which we leave as an exercise

for the reader), gives the following:

Example 1. Let f be a polynomial of degree n. Then et− f(t) has at most n + 1 zeros,

counted with their orders.

For those concerned to count zeros with their orders, we will need (repeatedly) the

following lemma about products of functions.

Lemma 2.3. Suppose that f has a zero of order k at t0. Let g be another function,
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and let h(t) = f(t)g(t). If g(t0) 6= 0, then h has a zero of order k at t0. If g has a simple

zero at t0, then h has a zero of order k + 1 there.

Proof. By Leibniz’s rule for derivatives of a product,

h(r)(t) =
r−1∑
s=0

(
r

s

)
f (s)(t)g(r−s)(t) + f (r)(t)g(t).

If g(t0) 6= 0, it follows that h(r)(t0) = 0 for 0 ≤ r ≤ k − 1 and h(k)(t0) 6= 0. If g(t0) = 0 and

g′(t0) 6= 0, then h(r)(t0) = 0 for 0 ≤ r ≤ k, while h(k+1)(t0) = (k + 1)f (k)(t0)g
′(t0) 6= 0. �

We also need the next lemma, showing that the orders of zeros are preserved by the

substitution that transforms Dirichlet polynomials into generalized ones.

Lemma 2.4. Suppose that F is defined on R and f(t) = F (log t) for t > 0. If F has

a zero of order k at x0, then f has a zero of order k at ex0. Hence Z(f) = Z(F ).

Proof. It is easily checked by induction that for each r ≥ 1,

f (r)(t) =
1

tr

r∑
s=1

αs,rF
(s)(log t)

for certain coefficients αs,r, with αr,r = 1. The first statement follows. So corresponding

zeros have the same order, and hence Z(f) = Z(F ). �

A further point about the order of zeros is helpful. If f has a simple zero at t0, so that

f ′(t0) 6= 0, then f(t) has opposite signs on either side of t0, since its graph crosses the axis

with non-zero gradient. More generally, we have:

Lemma 2.5. Let f have a zero of order k at t0. If k is odd, then f(t) changes sign at

t0. If k is even, it does not change sign there.

Proof. The first non-zero term in the Taylor series is (1/k!)(t − t0)
kf (k)(t0). More

exactly, Lagrange’s form of Taylor’s theorem says that for t 6= t0,

f(t) =
(t− t0)

k

k!
f (k)(u)

for some u between t and t0. By continuity, f (k)(u) has the same sign as f (k)(t0) for all u

close enough to t0. Meanwhile, (t− t0)
k changes sign at t0 only if k is odd. �

Once we know all the zeros of f , with their orders, Lemma 2.5 enables us to determine

its sign at all points. In particular, if all the zeros of f are simple, then the sign of f alternates

on the intervals between them.
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3. Descartes’ rule of signs

Let (aj) = (a1, a2, . . . , an) be a finite sequence of real numbers. We denote by S[(aj)]

the number of sign changes in the sequence, in other words, the number of terms that

have the opposite sign to the previous term (leaving out any zero terms). For example,

(2,−1, 1,−2,−2, 1,−1, 2) has six sign changes. Three obvious facts:

(i) S(a1, . . . , an) ≤ n− 1;

(ii) S(an, . . . , a1) = S(a1, . . . , an);

(iii) S[(aj)] is even if an has the same sign as a1, odd if it has the opposite sign.

(This is like crossing a river an even or odd number of times!)

We now prove Descartes’ rule of signs for Dirichlet and generalized polynomials.

Theorem 3.1. Let F be defined by (2), and f by (1), with p1 > · · · > pn. Then Z(F )

and Z(f) are not greater than S[(aj).

Proof. We prove the statement for F first. The proof is by induction on the number of

sign changes. If this number is zero, then all the aj have the same sign (say aj > 0): then,

clearly, F (x) > 0 for all x, so Z(F ) = 0.

So assume that the statement is true when there are m sign changes, and suppose that

S[(aj)] = m + 1. Let one of the sign changes (say the last one) occur at the term ak, so that

ak has the opposite sign to ak−1. Choose p such that pk < p < pk−1, and let

F0(x) = e−pxF (x) =
n∑

j=1

aje
(pj−p)x.

By Lemma 2.3, F0 has the same zeros (with the same orders) as F . Now

F ′
0(x) =

n∑
j=1

(pj − p)aje
(pj−p)x.

Since pk−1 − p > 0 and pk − p < 0, it is clear that (pj − p)aj does not change sign at j = k;

otherwise, it has the same sign changes as (aj). So [(pj−p)aj] has m sign changes, and, by the

induction hypothesis, Z(F ′
0) ≤ m. By Proposition 2.1, it follows that Z(F ) = Z(F0) ≤ m+1,

as required.

The statement for f follows, by Lemma 2.4. Alternatively, one could give a direct proof

on the above lines, with t−pf(t) replacing F0(x). �

The theorem has numerous consequences and applications. Firstly, it applies to ordi-

nary polynomials, thereby giving Descartes’ original result. The algebraic proof based on
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factorization ([Hen], section 6.2) is no shorter. For ordinary polynomials, one can apply the

rule again to f(−t) to obtain a bound for the number of negative zeros.

Example 2. Let f(t) = t12 − 6t5 + 4. Then f has at most two positive zeros. In fact,

the intermediate value theorem shows that it has exactly two, since f(0) = 4, f(1) = −1

and f(2) > 0. Also, f(−t) has entirely positive coefficients, so f has no negative zeros.

The length of a generalized or Dirichlet polynomial is the number of non-zero terms in

its defining expression (1) or (2). Note that an ordinary polynomial of degree n may have

length n + 1 (it may also be much less, as in Example 2). By remark (i) above, we have:

Corollary 3.2. A generalized polynomial, or a Dirichlet polynomial, of length n, has

at most n− 1 zeros (counted with their orders). �

To prove this statement directly, without bothering with sign changes, one would mod-

ify the proof of Theorem 3.1 by taking F0(x) = e−pkxF (x), so that one term becomes constant

and F ′
0 has length n− 1.

Corollary 3.3. Let F be defined by (2), with S[(aj)] = m. Then F assumes any

particular value at most r times, where r = min(m + 2, n). Similarly for the function f

defined by (1). If p1 ≤ 0 or pn ≥ 0, the same holds with r = m + 1.

Proof. Choose c, and let G(x) = F (x) − c = F (x) − ce0. Then G is a Dirichlet

polynomial of length n + 1 (or still n if one of the pj is 0). Also, when −c is inserted into

the sequence (aj) in the appropriate position, it introduces at most two new sign changes,

or at most one if p1 ≤ 0 or pn ≥ 0, since it is then in the first or last position (then recall

that m + 1 ≤ n). �

In the usual way, we can reformulate Corollary 3.2 in terms of linear algebra:

Theorem 3.4. Given distinct real numbers pi (1 ≤ i ≤ n) and distinct real numbers

xj (1 ≤ j ≤ n), the matrix with entries epixj is non-singular.

Proof. Let ui be row i of the matrix. Suppose that
∑n

i=1 aiui = 0, with some ai 6= 0.

Let F (x) =
∑n

i=1 aie
pix. Then the length of F is n (or less, if some of the ai are zero), and

F (xj) = 0 for each j. By Corollary 3.2, this is not possible. �

Corollary 3.5. Let distinct real numbers pi (1 ≤ i ≤ n) be given. Then there is a

unique Dirichlet polynomial F (x) =
∑n

i=1 aie
pix taking specified values at n distinct points.

Proof. This also follows from linear independence of the columns. �
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The following further property is often included in the statement of Descartes’ rule.

Proposition 3.6. Let F be defined by (2). Then S[(aj)]− Z(F ) is an even integer.

Proof. Suppose first that a1 and an have the same sign. Then S[(aj)] is even. For

sufficiently large x, F (x) is dominated by the term a1e
p1x, so has the same sign as a1. For

sufficiently large −x, it has the same sign as an. So the total number of sign changes of F (x)

is even. By Lemma 2.5, this means that there are an even number of zeros of odd order, so

that Z(F ) is even. If, instead, a1 and an have opposite signs, then both quantities are odd.

In either case, the difference is even. �

Two further remarks on Theorem 3.1. (1) If the formula defining F (x) or f(t) is

replaced by an infinite series of the same type, then the result still holds (with the same

proof) for x or t within the interval of convergence, assuming that the sequence (aj) has only

finitely many sign changes.

(2) As a function of a complex variable, a Dirichlet polynomial can have infinitely many

zeros: for example, ex − 1 = 0 when x = 2nπi for any integer n.

Among Dirichlet polynomials, a special case of particular interest is when each aj is

either 1 or −1, with equally many of each occurring. We will call this type bipartite. Note

that this implies F (0) = 0. One such example, for those who know about such things, is

given by the periodic blocks of a real Dirichlet L-series. Another (with a change of notation)

is as follows. Given a vector b = (b1, . . . , bn) (with bj ≥ 0 for all j) and p ≥ 1, its `p-norm

is ‖b‖p = (
∑n

j=1 bp
j)

1/p. (This is a scale of alternative measurements of “length”: p = 2 gives

the usual “Euclidean” length). Given now two vectors b and c, which has larger `p-norm?

The answer may be different for different p. The comparison is represented by the bipartite

Dirichlet polynomial F (p) =
∑n

j=1(b
p
j − cp

j).

Example 3. Let b = (5, 2, 2) and c = (4, 4, 1). Then (with notation as above),

F (p) = 5p − 2.4p + 2.2p − 1p,

with three sign changes (to show it explicitly as bipartite, we would write 4p + 4p instead

of 2.4p). Simple calculation shows that
∑3

j=1 bj =
∑3

j=1 cj and
∑3

j=1 b2
j =

∑3
j=1 c2

j , so that

F (0) = F (1) = F (2) = 0. By Theorem 3.1, these are the only zeros of F , and they are

all simple zeros. Since F (3) = 12 > 0, we can deduce that F (p) > 0 on (2,∞) and (0, 1),

and F (p) < 0 on (−∞, 0) and (1, 2). In terms of `p-norms, ‖b‖p < ‖c‖p for 1 < p < 2 and

‖b‖p > ‖c‖p for p > 2.
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4. Bounds in terms of the sequence of partial sums of (aj)

Write Aj = a1 + a2 + · · ·+ aj (and similarly for another sequence (bj)). In this section,

we present two powerful variations of Descartes’ rule, relating the number of zeros to S[(Aj)]

instead of S[(aj)]. As the following example shows, S[(Aj)] can be much smaller.

Example 4. Consider our previous example (aj) = (2,−1, 1,−2,−2, 1,−1, 2), which

has six sign changes. Then (Aj) is (2, 1, 2, 0,−2,−1,−2, 0), with one sign change.

The first theorem requires the extra condition An = 0. This is clearly satisfied in the

bipartite case. With f and F defined by (1) and (2), we have An = f(1) = F (0), so the

condition An = 0 means that f(1) = 0 or F (0) = 0. If the condition is not satisfied, but

f(t0) or F (x0) is zero at another point t0 or x0, then the substitution f1(t) = f(tt0) or

F1(x) = F (x + x0) gives another function of the same sort satisfying the condition.

We follow the elegant method outlined in [P-Sz] (Part V, exercises 80, 83). First, some

elementary facts about S[(Aj)] in general.

Lemma 4.1. In all cases, S[(Aj)] ≤ S[(aj)]. If An = 0, then S[(aj)] − S[(Aj)] is an

odd integer, so S[(Aj)] ≤ S[(aj)]− 1.

Proof. Suppose that (Aj) has k sign changes, at r1, r2, . . . , rk, and that A1 > 0. Then

Ar1 < 0, Ar2 > 0, and so on. Also, Ar1−1 ≥ 0, so ar1 < 0. Similarly, ar2 > 0, and so on.

So (aj) has at least one sign change between 1 and r1 (possibly more, and not necessarily

at r1 itself!). Again, it has at least one sign change between r1 and r2, and so on. Hence

S[(aj)] ≥ k.

If An = 0, then An−1 = −an, while A1 = a1, so S[(Aj)] must differ from S[(aj)] by an

odd integer. �

Lemma 4.2. Suppose that An = 0 and let (bj) be (aj) in reverse order, so that

(b1, b2, . . . , bn) = (an, an−1, . . . a1). Then S[(Bj)] = S[(Aj)].

Proof. We have Bj + An−j = a1 + a2 + · · ·+ an = 0, hence

(B1, B2, . . . , Bn) = (−An−1,−An−2, . . . ,−A1, 0),

which clearly has the same number of sign changes as (Aj). �

Nothing of the sort is true when An 6= 0, as we shall see in examples below.

Lemma 4.3. If (aj) is bipartite of length 2n, then S[(Aj)] ≤ n− 1.
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Proof. Suppose that (Aj) has a sign change at j = k. Since each aj is 1 or −1, this

means that Ak−1 = 0, and the next sign change cannot occur before j = k + 2. The first

sign change cannot occur until j = 3, so the total number is at most n − 1. This number

occurs when (aj) consists of pairs (1,−1) alternating with (−1, 1). �

The starting point for the stated result is the following useful identity, known as Abel

summation. Note that a1 = A1 and aj = Aj − Aj−1 for j ≥ 2. Substituting this, we obtain

a1b1 + a2b2 + · · ·+ anbn = A1b1 + (A2 − A1)b2 + · · ·+ (An − An−1)bn

=
n−1∑
j=1

Aj(bj − bj+1) + Anbn. (3)

When An = 0, the final term in (3) disappears.

This time there is a much easier proof for ordinary polynomials, so we present it first.

For this purpose, relying on Lemma 4.2, we list the powers tj in the usual increasing order.

Also, the first term is a0, so Aj means a0 + a1 + · · ·+ aj.

Proposition 4.4. Let f(t) =
∑n

j=0 ajt
j, with An = 0. Then Z[f, (0,∞)] ≤ S[(Aj)]+1.

Proof. By (3), we have

f(t) =
n−1∑
j=0

Aj(t
j − tj+1) = (1− t)g(t),

where g(t) =
∑n−1

j=0 Ajt
j. By Descartes’ rule, Z(g) ≤ S[(Aj)]. Now 1 − t has a simple zero

at 1, and no other zeros, so Lemma 2.3 gives Z(f) = Z(g) + 1. �

Example 5. Let

f(t) = 2t12 − t10 + t9 − 2t8 − 2t5 + t3 − t + 2.

As we saw in Example 4, (Aj) has one sign change. Hence Z[f, (0,∞)] ≤ 2. In fact, it equals

2, since f(0) = 2, f(1) = 0 and f ′(1) > 0, so that f(t) < 0 for t just less than 1.

We now turn to the general case. Let F (x) be defined by (2), with p1 > · · · > pn. By

(3), together with the condition An = 0, we have

F (x) =
n−1∑
j=1

Aj(e
pjx − epj+1x). (4)

If (Aj) has no sign changes, so that (say) Aj ≥ 0 for each j, this shows that F (x) > 0 for

x > 0 and F (x) < 0 for x < 0, so that F has no zeros except the one at 0.
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For fixed x 6= 0, we can rewrite (4) as an integral with respect to another variable t,

using the fact that d
dt

etx = xetx:

F (x) = x

n−1∑
j=1

Aj

∫ pj

pj+1

etx dt. (5)

Equation (5) also holds when x = 0, because F (0) = An = 0. We can rewrite the identity

again as follows: F (x) = xG(x), where

G(x) =

∫ p1

pn

φ(t)etx dt, (6)

in which

φ(t) = Aj for pj+1 < t < pj (1 ≤ j ≤ n− 1). (7)

It doesn’t matter what values are assigned to φ(t) at the points pj, because the value at one

point does not affect the integral. In terms of the values assumed on successive intervals

(pj+1, pj), the function φ has sign changes exactly corresponding to those of (Aj). Of course,

φ is discontinuous at the points pj, but continuous (in fact, constant) on the open intervals

between them.

What we now need is a general result analogous to Theorem 3.1 for functions defined

by an integral in this way. We change the notation slightly for this purpose. In fact, suppose

that φ is a function on (a, b) such that

(A) there exist points a = t0 < t1 < · · · < tn = b such that φ is bounded, continuous and

non-zero on each open interval (tj−1, tj),

We count the point tj as a sign change of φ if it has opposite signs on (tj−1, tj) and (tj, tj+1).

Lemma 4.5. Suppose that φ satisfies (A) and has m sign changes in (a, b). Let

G(x) =

∫ b

a

φ(t)etx dt (x ∈ R).

Then Z(G) ≤ m.

Proof. Induction on m, copying the proof of Theorem 3.1. If m = 0, then either

φ(t) > 0 or φ(t) < 0 on each interval (tj−1, tj): assume the first. Condition (A) now ensures

that G(x) > 0 for all x, so Z(G) = 0.

Now assume that the statement is correct for a certain value m and that φ has m + 1

sign changes. Let one of them be at tk, and let

G0(x) = e−tkxG(x) =

∫ b

a

φ(t)e(t−tk)x dt.
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By differentiation under the integral sign (but see the note below!),

G′
0(x) =

∫ b

a

(t− tk)φ(t)e(t−tk)x dt.

The function (t− tk)φ(t) still satisfies condition (A), and does not have a sign change at tk

(because t− tk changes sign there), so it has m sign changes. By the induction hypothesis,

Z(G′
0) ≤ m. Rolle’s theorem gives the required statement Z(G) = Z(G0) ≤ m + 1. �

Note. The general theorem on differentiation under the integral sign is distinctly more

advanced than everything else we have used. What is really required here is only the following

special case: if G(x) =
∫ a

0
tnetx dt, then G′(x) =

∫ a

0
tn+1etx dt. One can verify this directly,

as follows (we leave the details to the sufficiently determined reader). Substitute tx = u

to get G(x) = x−n−1
∫ ax

0
uneu du. Differentiate by the product rule, using the fundamental

theorem of calculus in the form d
dx

∫ x

0
f(u) du = f(x). Use integration by parts to show that

the supposed expression for G′(x) (after substituting tx = u again) agrees. There is no need

for an explicit evaluation of the integral defining G(x)!

Putting all this together, we have our promised theorem:

Theorem 4.6. Let F be defined by (2), and f by (1), with p1 > · · · > pn and An = 0.

Then Z(F ) and Z(f) are not greater than S[(Aj)] + 1.

Proof. Recall that F (x) = xG(x), where G(x) is defined by (6) and φ(t) by (7). By

Lemma 4.5, Z(G) ≤ S[(Aj)]. The factor x is zero at 0, so, by Lemma 2.3, has the effect that

Z(F ) = Z(G) + 1. �

Example 6. Let G(p) =
∑4

j=1(b
p
j − cp

j), where b = (9, 6, 5, 2) and c = (8, 8, 3, 3). Then

G is bipartite of length 8, so our theorems show that Z(G) ≤ 4. It is easy to check the

remarkable fact that
∑4

j=1 br
j =

∑4
j=1 cr

j for r = 0, 1, 2, 3, so that G(0) = G(1) = G(2) =

G(3) = 0. So, by Theorem 4.6, these are the only zeros of G, and they are simple, so the

sign of G(p) alternates on the intervals between them.

Not all is lost when An 6= 0. Retracing our steps, we obtain the following variant of

the theorem, counting positive zeros for F and zeros in (1,∞) for f .

Theorem 4.7. Let F be defined by (2), and f by (1), with p1 > · · · > pn. Then

(without the condition An = 0), Z[F, (0,∞)] and Z[f, (1,∞)] are not greater than S[(Aj)].

Proof. In (4), we must add the term Ane
pnx. For x > 0, this can be written as

x
∫ pn

−∞ etx dt, which must be added to the expression in (5). Then continue as before, but the

factor x no longer adds 1, since 0 is not in (0,∞). �
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By applying this theorem to F (−x) or f(1/t), we obtain at once the following corollary,

in which the order of the aj is reversed (which amounts to considering the pj in increasing

order):

Corollary 4.8. Let F and f be as in Theorem 4.7. Let (b1, b2, . . . , bn) = (an, an−1, . . . a1).

Then Z[F, (−∞, 0)] and Z[f, (0, 1)] are not greater than S[(Bj)]. �

By substituting F1(x) = F (x+ r) and f1(t) = f(rt), we can apply Theorem 4.7 to give

bounds for Z[F, (r,∞)] and Z[f, (r,∞)]: the coefficents aj are replaced by aje
rpj and ajr

pj

in the two cases.

Theorem 4.7 and Corollary 4.8 can be applied to F (x)−c to give bounds for the number

of times a non-zero value is assumed (but Theorem 4.6 can’t, because the condition An = 0

does not survive the insertion of an extra term). The next example illustrates these results,

using an ordinary polynomial.

Example 7. Let

f(t) = (t− 1
10

)(t− 2
10

)(t− 3
10

)(t− 4
10

) = t4 − t3 + 7
20

t2 − 1
20

t + 24
104 ,

with four zeros in (0, 1) and none in (1,∞). When the terms are taken in descending order,

Aj ≥ 0 for all j, but when they are taken in ascending order, the partial sums (Bj) have

four sign changes. Further, let g(t) = t4 − t3 + 7
20

t2 − 1
20

t − 3
10

. For g, we have Aj ≥ 0 for

all j and A5 = 0, so g has only one positive zero (at 1). However, g(t) assumes the value

− 3
10
− 24

104 when f(t) is zero, hence four times.

Example 8. Let f(t) = t6 − 5t5 + 2t3 − 2t2 + 8. By 4.7 and 4.8, f has at most two

zeros in (1,∞) (in fact, there are two), and none in (0, 1).

Historical note. Theorem 4.7 is stated explicitly in both [La] and [P-Sz], but Theorem

4.6 isn’t. Laguerre’s original proof of Theorem 4.7, for polynomials, can be seen in [Hou,

Theorem 2.4.5]. For the extension to other functions, his reasoning seems to be incomplete,

because it depends on an unexplained (and, to this author, unconvincng) limiting process

[La, p. 9].
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