The probability integral by volume of revolution

Several notes on the evaluation of the probability integral \(\int_{-\infty}^{\infty} e^{-x^2} \, dx \) have appeared in recent volumes of the *Gazette* (see the references below). Here is a very simple method based on volumes of revolution and double integrals (but without any change of variables). Has anyone seen it before?

Denote the required integral by \(I \). Let \(A \) be the region in the \((x, z)\)-plane defined by

\[
0 \leq z \leq e^{-x^2}, \quad x \geq 0.
\]

Consider the 3-dimensional region obtained when \(A \) is rotated about the \(z \)-axis. This region is obviously defined by

\[
0 \leq z \leq e^{-x^2-y^2},
\]

so its volume is

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2-y^2} \, dx \, dy = I^2.
\]

But this volume was obtained by rotating the curve \(x^2 = -\ln z \) (for \(0 < z \leq 1 \)) about the \(z \)-axis, so it equals

\[
\pi \int_{0}^{1} x^2 \, dz = \pi \int_{0}^{1} (-\ln z) \, dz = \pi.
\]

Hence \(I = \sqrt{\pi} \). The limiting process for both integrals is taken care of by the fact that \(\delta \ln \delta \to 0 \) as \(\delta \to 0 \) from above.

References

TIMOTHY P. JAMESON

13 Sandown Road, Lancaster LA1 4LN.