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The perimeter of the ellipse x2/a2 + y2/b2 = 1 is 4J(a, b), where J(a, b) is the “elliptic

integral”

J(a, b) =

∫ π/2

0

(a2 cos2 θ + b2 sin2 θ)1/2 dθ. (1)

This integral is interesting in its own right, quite apart from its application to the ellipse. It

is often considered together with the companion integral

I(a, b) =

∫ π/2

0

1

(a2 cos2 θ + b2 sin2 θ)1/2
dθ. (2)

Of course, we may as well assume that a and b are non-negative. We record first some

elementary facts about these integrals:

(E1) J(a, a) =

∫ π/2

0

a dθ =
πa

2
, I(a, a) =

π

2a
;

(E2) J(a, 0) =

∫ π/2

0

a cos θ dθ = a, I(a, 0) is undefined;

(E3) for c > 0, J(ca, cb) = cJ(a, b) and I(ca, cb) = 1
c
I(a, b);

(E4) J(b, a) = J(a, b) and I(b, a) = I(a, b) (substitute θ = π
2
− φ);

(E5) J(a, b) increases with a and with b, and I(a, b) decreases.

In general, neither integral is amenable to evaluation by simply writing down an anti-

derivative. However, both can be evaluated in terms of the arithmetic-geometric mean

M(a, b) of a and b. This is the common limit of the sequences (an) and (bn) defined by

the iteration a0 = a, b0 = b and

an+1 = 1
2
(an + bn), bn+1 = (anbn)1/2.

Write a2
n − b2

n = c2
n and S =

∑∞
n=0 2n−1c2

n. It turns out that

I(a, b) =
π

2M(a, b)
, (3)

J(a, b) = (a2 − S)I(a, b). (4)

Moreover, the iteration converges very rapidly, so these identities amount to an effective

way to calculate the integrals. Identity (3) is a famous theorem of Gauss, dating from 1799.

Identity (4) is the basis of the very efficient Gauss-Brent-Salamin algorithm for calculation

of π. We will not enter into any details here; for a highly readable account, see [Lo].
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While (4), in principle, is an exact evaluation of J(a, b), it certainly does not convey a

quick and transparent indication of its magnitude in terms of a and b. This purpose is better

achieved by inequalities comparing J(a, b) with simple expressions like a+ b and (a2 + b2)1/2.

One lower bound, π
4
(a + b), was given in [LS], as a solution to a Gazette problem. However,

bounds of this sort are accurate for some values of b/a and less accurate for others, so for

a really satisfactory estimation of J(a, b), more than one lower bound (and equally, more

than one upper bound) is needed. Here we will describe three different ways to derive such

bounds directly from (1). I hope that some readers will share my view that the methods

themselves are as interesting as the conclusions.

First, we mention a pair of bounds that follow at once from elementary facts (E1) and

(E5): if a ≥ b, then J(b, b) ≤ J(a, b) ≤ J(a, a), so that

π

2
b ≤ J(a, b) ≤ π

2
a. (5)

Geometrically, this is saying that the perimeter of the ellipse lies between those of the

inscribed and circumscribed circles.

Another pair of bounds that seem geometrically obvious is

(a2 + b2)1/2 ≤ J(a, b) ≤ a + b, (6)

since this says that the curve of the quarter-ellipse is longer than the straight-line path be-

tween the same points, but shorter than two sides of the rectangle. However, it is instructive

to see how these inequalities can be proved analytically. For the right-hand inequality, this

is very easy: since (x2 + y2)1/2 ≤ x + y for positive x, y, we have (a2 cos2 θ + b2 sin2 θ)1/2 ≤
a cos θ + b sin θ for each θ. Integration on [0, π/2] gives J(a, b) ≤ a + b.

We will improve this inequality below, as well as giving an analytic proof of the left-

hand inequality in (6). We will also establish inequalities in the reverse direction to both

sides of (6), with suitable constants inserted.

Our first method uses the Cauchy-Schwarz inequality, which states: for non-negative

numbers ar, br (1 ≤ r ≤ n), we have

n∑
r=1

arbr ≤

(
n∑

r=1

a2
r

)1/2( n∑
r=1

b2
r

)1/2

.

This can be stated very concisely in vector notation: it says a.b ≤ |a|.|b|, where the length of

the n-dimensional vector a = (a1, a2, . . . , an) is |a| = (
∑n

r=1 a2
r)

1/2, and a.b means
∑n

r=1 arbr.

The proof is short and neat, so we repeat it: writing a.b = S, we have, for any λ,

0 ≤
n∑

r=1

(ar − λbr)
2 = |a|2 − 2λS + λ2|b|2.
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With λ chosen to be S/|b|2, this says |a|2 − S2/|b|2 ≥ 0, hence S ≤ |a|.|b|.

There is a corresponding statement for integrals, proved in an analogous way. We write∫ b

a
f (this is perfectly adequate notation!) for

∫ b

a
f(x) dx. The inequality states: if f and g

are non-negative, integrable functions on [a, b], then∫ b

a

fg ≤
(∫ b

a

f 2

)1/2(∫ b

a

g2

)1/2

.

The Cauchy-Schwarz inequality enables us to give a rather elegant analytic proof of

the left-hand inequality in (6), as follows:

PROPOSITION 1. We have

J(a, b) ≥ (a2 + b2)1/2. (7)

Proof. By the Cauchy-Schwarz inequality,

a2 cos θ + b2 sin θ = a(a cos θ) + b(b sin θ) ≤ (a2 + b2)1/2(a2 cos2 θ + b2 sin2 θ)1/2.

Integrating on [0, π/2], we obtain

a2 + b2 ≤ (a2 + b2)1/2J(a, b),

hence (7). �

Note that (7) is exact when b = 0, since J(a, 0) = a, but not when b = a. A variation of

the reasoning gives a second lower bound which is exact when b = a but not when b = 0, and

which also improves upon the one in (5). This bound was established in [LS], by essentially

the same method (though without explicit mention of the Cauchy-Schwarz inequality).

PROPOSITION 2. We have

J(a, b) ≥ π

4
(a + b). (8)

Equality holds when a = b.

Proof. By the Cauchy-Schwarz inequality,

a cos2 θ + b sin2 θ = (a cos θ) cos θ + (b sin θ) sin θ

≤ (a2 cos2 θ + b2 sin2 θ)1/2(cos2 θ + sin2 θ)1/2

= (a2 cos2 θ + b2 sin2 θ)1/2.

Integration gives (8), since
∫ π/2

0
cos2 θ dθ =

∫ π/2

0
sin2 θ dθ = π

4
. Equality holds when a = b,

by (E1). �
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Note that this says that the perimeter of the whole ellipse is at least π(a + b). By the

inequality of the means, this is not less than 2π(ab)1/2, still with equality occurring when

a = b. As observed in [LS], this means that among ellipses with a given area, the one with

the smallest perimeter is the circle. Equally, among ellipses with a given perimeter, the circle

is the one with the largest area.

An upper bound for J(a, b) is provided by the Cauchy-Schwarz inequality for integrals:

PROPOSITION 3. We have

J(a, b) ≤ π

2
√

2
(a2 + b2)1/2. (9)

Equality holds when a = b.

Proof. Apply the Cauchy-Schwarz inequality for integrals with f written as f.1 and

both sides squared. We obtain

J(a, b)2 ≤

(∫ π/2

0

1

)∫ π/2

0

(a2 cos2 θ + b2 sin2 θ) dθ =
π

2

π

4
(a2 + b2). �

Since π/(2
√

2) ≈ 1.1107, the pair of bounds in (7) and (9) shows that J(a, b) is actually

modelled fairly well by (a2 + b2)1/2.

We now describe a second strategy, based on the triangle inequality for vectors. Note

that, in the notation for the length of vectors,

J(a, b) =

∫ π/2

0

|(a cos θ, b sin θ)| dθ.

The familiar triangle inequality for vectors says that |u1 +u2| ≤ |u1|+ |u2|. This is geomet-

rically obvious in the case n = 2, and in general it follows easily from the Cauchy-Schwarz

inequality. We show that J(a, b) also satisfies the triangle inequality, in the following sense:

PROPOSITION 4. Let uj = (aj, bj) (j = 1, 2), where aj, bj ≥ 0. Then

J(u1 + u2) ≤ J(u1) + J(u2). (10)

Proof. By the ordinary triangle inequality, we have for each θ

|[(a1 + a2) cos θ, (b1 + b2) sin θ]| ≤ |(a1 cos θ, b1 sin θ)|+ |(a2 cos θ, b2 sin θ)|.

Integrating on [0, π
2
], we deduce that

J(a1 + a2, b1 + b2) ≤ J(a1, b1) + J(a2, b2),

which equates to (10). �
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Note. Since J(a, b) = J(|a|, |b|), (10) actually holds without the condition that the

components are non-negative. In the usual parlance, J(a, b) is a norm on the vector space

R2, and we are comparing it with other norms like |a|+ |b| and (a2 + b2)1/2.

By suitable choices of u1 and u2, we can read off various inequalities for J(a, b). Firstly,

J(a, b) ≤ J(a, 0) + J(0, b) = a + b, as seen in (6). Secondly:

Second proof of (8). Since (a + b, a + b) = (a, b) + (b, a), we have

(a + b)
π

2
= J(a + b, a + b) ≤ J(a, b) + J(b, a) = 2J(a, b). �

Thirdly, we can derive an upper bound that simultaneously improves on those in (5)

and (6), and is exact at both ends, at the cost of being unsymmetrical:

PROPOSITION 5. For 0 ≤ b ≤ a, we have

J(a, b) ≤ a +
(π

2
− 1
)

b. (11)

Equality holds when b = 0 and when b = a.

Proof. Since (a, b) = (a− b, 0) + (b, b),

J(a, b) ≤ J(a− b, 0) + J(b, b) = (a− b) +
π

2
b. �

This bound is more natural than one might at first think. For fixed a, it represents

the linear function of b that agrees with J(a, b) at b = 0 and b = a. In fact, (11) reflects the

fact that J(a, b) is a convex function of b. Recall that a function is “convex” if it lies below

the straight-line chords between pairs of points of its graph. This means that if b1 < b2 and

bλ = (1− λ)b1 + λb2, where 0 < λ < 1, then

f(bλ) ≤ (1− λ)f(b1) + λf(b2).

By Proposition 4 and (E3), this holds with f(b) = J(a, b), since (a, bλ) = (1 − λ)(a, b1) +

λ(a, b2).

Comparison of the bounds, and a question about the derivative

Our two lower bounds for J(a, b) are m1 = π
4
(a + b) (exact when b = a) and m2 =

(a2 + b2)1/2 (exact when b = 0). To explore how they compare, first fix a = 1. The two

bounds coincide when 1 + b2 = π2

16
(1 + b)2. The solutions of this quadratic are b1 and 1/b1,

where b1 ≈ 0.34823. The better (i.e. larger) lower bound is m2 when 0 < b < b1 and when
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b > 1/b1. For general a, apply this to b/a to conclude that m2 is the larger one when either

b/a or a/b is less than b1.

Meanwhile, for b ≤ a, our upper bounds are M1 = a + (π
2
− 1)b (exact at both ends)

and M2 = π
2
√

2
(a2 + b2)1/2 (exact when b = a). When a = 1, the bounds coincide when

[1+ (π
2
− 1)b]2 = π2

8
(1+ b)2. One solution is b = 1, and the other is b2 ≈ 0.25741. The better

(i.e. smaller) upper bound is M1 when b
a

< b2.

Fixing a = 1, write J1(b) for J(1, b). Do we now have enough information to give an

accurate sketch of J1(b) as a function of b on the interval [0, 1]? The reader may care to

draw a sketch of our four bounds on this interval, and it will be seen that between them

they confine J1(b) to a fairly narrow box. But one ingredient for the sketch is still missing:

it would be desirable to know the derivative, at least at the end-points. At b = 1, we do

know: J1(b) is sandwiched between m1 = π
4
(1 + b) and M2 = π

2
√

2
(1 + b2)1/2, and both have

gradient π/4 there, hence J ′1(1) = π/4. Of course, this means that both m1 and M2 give

good approximations to J1(b) for b close to 1. Also, m1 is the tangent to the graph at b = 1,

and the fact that the function is above the tangent again reflects convexity.

However, at b = 0, J1(b) is sandwiched between (1 + b2)1/2 (with gradient 0) and

1+(π
2
−1)b (with gradient π

2
−1), which tells us nothing about J ′1(0). We will now settle this

problem. Contrary to what one might expect, we will do so by deploying some corresponding

estimations for I(a, b).

Inequalities for I(a, b)

A pair of bounds for I(a, b) follows at once from identity (3): since (ab)1/2 ≤M(a, b) ≤
1
2
(a + b), we have

π

a + b
≤ I(a, b) ≤ π

2(ab)1/2
. (12)

The right-hand inequality can also be proved directly by the Cauchy-Schwarz inequality for

integrals, most easily with I(a, b) expressed in the equivalent form

I(a, b) =

∫ ∞

0

1

(x2 + a2)1/2(x2 + b2)1/2
dx,

which equates to (2) by the substitution x = b tan θ.

The left-hand inequality in (12) does no justice to the fact that I(a, b) actually tends

to infinity as b → 0+. In fact, there is a theorem describing I(1, b) very well for small b: a

simple version of it states

log
4

b
< I(1, b) < log

4

b
+ 1

2
b. (13)

The proof, which is not very hard, can be seen in [Jam].
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The integral L(a, b), and a closer estimation for small b

Integrals of the following type form a very neat link between J(a, b) and I(a, b) (here

we are following the account in [Lo]). For a > 0 and b ≥ 0, define

L(a, b) =

∫ π/2

0

cos2 θ

(a2 cos2 θ + b2 sin2 θ)1/2
dθ. (14)

The first thing to note is that L(b, a) 6= L(a, b). In fact, the substitution θ = π
2
− φ gives

L(b, a) =

∫ π/2

0

sin2 θ

(a2 cos2 θ + b2 sin2 θ)1/2
dθ. (15)

From (14) and (15), we deduce at once (for a, b > 0) the following attractive pair of identities:

L(a, b) + L(b, a) = I(a, b), (16)

a2L(a, b) + b2L(b, a) = J(a, b). (17)

By eliminating L(b, a) in (16) and (17), we deduce

(a2 − b2)L(a, b) = J(a, b)− b2I(a, b). (18)

It is clear that L(a, b) decreases with a and b, also L(a, 0) = 1/a and L(a, a) = π/(4a),

so for 0 ≤ b ≤ a, L(a, b) lies between these two values. Note that L(0, b) is not defined.

By differentiation under the integral sign, we have ∂
∂b

J(a, b) = bL(b, a). To complete

the symmetry, we mention that also ∂
∂b

I(a, b) = −1
b
L(a, b) (but this only becomes apparent

after applying the substitution x = b tan θ to both integrals).

So J ′1(b) = bL(b, 1), and in particular, J ′1(1) = L(1, 1) = π/4, as we saw earlier. This

expression for J ′1(b) is undefined at b = 0, but we don’t need it: we can easily determine

J ′1(0) using (18) and the elementary inequality (12).

PROPOSITION 6. We have J(1, b) ≤ 1 + π
2
b3/2 for 0 ≤ b ≤ 1, hence J ′1(0) = 0.

Proof. By (18),

J(1, b) = b2I(1, b) + (1− b2)L(1, b).

Now L(1, b) ≤ 1 for 0 ≤ b ≤ 1, so, with (12), we have J(1, b) ≤ 1 + b2I(1, b) ≤ 1 + π
2
b3/2.

Hence

0 ≤ J1(b)− 1

b
≤ π

2
b1/2.

This tends to 0 when b → 0+, which shows that J ′1(0) = 0. �
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This might seem good enough. However, given (13), it will now cost us very little

further work to derive corresponding bounds for J(1, b), giving a highly accurate estimation

for small b. We will express J1(b) as the integral of its derivative bL(b, 1), so we want bounds

for L(b, 1).

LEMMA. For 0 < b < 1,

log
1

b
+ c1 ≤ L(b, 1) ≤ log

1

b
+ c2, (19)

where c1 = log 4− 1 and c2 = log 4 + 1
2
− π/4.

Proof. By (16), we have L(b, 1) = I(1, b)− L(1, b). Now π
4
≤ L(1, b) ≤ 1, and by (13),

log
1

b
+ log 4 ≤ I(1, b) ≤ log

1

b
+ log 4 + 1

2

for 0 < b < 1. Together, these inequalities give (19). �

PROPOSITION 7. For 0 < b < 1,

J(1, b) = 1 + 1
2
b2 log

1

b
+ r(b), (20)

where c3b
2 ≤ r(b) ≤ c4b

2, with c3 = log 2 − 1
4

and c4 = 1
2

+ log 2 − π
8

(so, in particular,

0 < r(b) < b2).

Proof. We have

J1(b)− 1 =

∫ b

0

J ′1(t) dt =

∫ b

0

tL(t, 1) dt,

and by (19), −t log t + c1t ≤ tL(t, 1) ≤ −t log t + c2t. Now∫ b

0

(−t log t) dt =
[
−1

2
t2 log t

]b
0
+

∫ b

0

1
2
t dt = 1

2
b2 log

1

b
+ 1

4
b2.

The stated bounds are found by adding, respectively,
∫ b

0
c1t dt = 1

2
c1b

2 and 1
2
c2b

2. �

So we now have a pair of bounds that differ by less than b2. The previous lower bound

m2 = (1+ b2)1/2 has the correct gradient 0 at b = 0, but the lower bound in (20) is obviously

stronger for small b. In fact, it is greater than 1 + 1
2
b2 (hence greater than m2) for all b ≤ 3

4
.

Since J(a, 1) = aJ(1, 1
a
), we can derive the following estimation, effective for large a:

J(a, 1) = a +
log a

2a
+ r1(a),

where c3/a ≤ r1(a) ≤ c4/a.

Finally, a fact that may seem rather surprising: J1 does not have a second derivative

at 0, because by the Lemma, 1
b
J ′1(b) = L(b, 1) →∞ as b → 0+.
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