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Consider the integral

I1 =

∫ ∞
0

e−ax − e−bx

x
dx,

where b > a > 0. First, let us clarify why it even exists. Of course, convergence at infinity is

ensured by the exponential terms, but the integrals of e−ax/x and e−bx/x, taken separately,

are divergent at 0, since these integrands equate asymptotically to 1/x as x→ 0. However,

e−ax − e−bx = (b− a)x+ 1
2
(b2 − a2)x2 + · · ·, so (e−ax − e−bx)/x tends to the finite limit b− a

as x→ 0 and there is no problem integrating it on intervals of the form [0, r].

A neat way to evaluate I1 starts by expressing the integrand itself as an integral:

e−ax − e−bx

x
=

∫ b

a

e−xy dy. (1)

Inserting this into I1 converts it into a double integral. One might have thought that this is

simply making things worse, but reversal of the double integral now delivers the solution in

elegant style:

I1 =

∫ ∞
0

∫ b

a

e−xy dy dx

=

∫ b

a

∫ ∞
0

e−xy dx dy

=

∫ b

a

1

y
dy

= log b− log a. (2)

There are other ways to evaluate I1. It is a special case of the “Frullani integral”∫ ∞
0

f(ax)− f(bx)

x
dx = (c0 − c∞)(log b− log a),

where f(x) tends to c0 as x → 0+ and to c∞ as x → ∞ [Fer, p. 134–135]. Another quite

simple method is described in [Jam1, p. 280].

However, our topic here is the double-integral method. It has certainly been in circula-

tion for a long time. An example of its use occurs in the 1909 note [Har] by G. H. Hardy: I

am grateful to the Math. Gazette referee for drawing my attention to this reference. It seems

highly likely the method was already well established by then.
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We will describe a number of other integrals for which the double-integral method

is effective, comparing it with any other available methods. We will not suppress one or

two cases where it compares unfavourably with other methods, thereby demonstrating its

limitations. Most of our examples are variations of I1 in one way or another.

First, consider

I2 =

∫ ∞
0

tan−1 bx− tan−1 ax

x
dx.

This is again of the Frullani type. Taken separately, the two terms would give integrals that

diverge at infinity. Since d
dy

tan−1 xy = x/(1 + x2y2), we have

tan−1 bx− tan−1 ax

x
=

∫ b

a

1

1 + x2y2
dy.

So after reversal of the double integral as before, we obtain

I2 =

∫ b

a

∫ ∞
0

1

1 + x2y2
dx dy

=

∫ b

a

π

2y
dy

=
π

2
(log b− log a). (3)

Another natural variation of I1 is

I3 =

∫ ∞
0

cos ax− cos bx

x
dx.

This converges at 0, since cos ax− cos bx = 1
2
(b2− a2)x2 +O(x4). Both the Frullani method,

and the method of [Jam1], establish quite easily that (again) I3 = log b − log a. How does

the double-integral method perform? The analogue of (1) is

cos ax− cos bx

x
=

∫ b

a

sinxy dy,

so I3 =
∫∞
0

∫ b
a

sinxy dy dx. Formal reversal now fails completely at the first hurdle: it serves

up the obviously divergent integral
∫∞
0

sinxy dx ! Clearly, we are outside the rules for the

procedure (of which more later). However, there is no problem about reversal if we reduce

the interval for x-integration to a bounded interval [0, X], to obtain∫ X

0

cos ax− cos bx

x
dx =

∫ X

0

∫ b

a

sinxy dy dx

=

∫ b

a

∫ X

0

sinxy dx dy

=

∫ b

a

1

y
(1− cosXy) dy

= log b− log a− J(X),
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where J(X) =
∫ b
a

1
y

cosXy dy. We can now deduce the result by invoking the Riemann-

Lebesgue lemma, which says that for a function f(y) with continuous derivative on [a, b], we

have
∫ b
a
f(y) cosXy dy → 0 as X →∞ (this is quite easily proved by integration by parts).

Hence J(X) → 0 as X → ∞, and I3 = log b − log a. However, we must concede that the

other methods deliver this integral more easily.

Our next example is the integral of a product of two terms of the type (1): substitution

now results in a triple integral. This example appeared in [95F], as part of the evaluation of

another double integral. Let

I4 =

∫ ∞
0

1

x2
(1− e−ax)(1− e−bx) dx.

By (1), 1
x
(1− e−ax) =

∫ a
0
e−xy dy. Substituting similarly for the second factor, we obtain

I4 =

∫ ∞
0

(∫ a

0

e−xy dy

)(∫ b

0

e−xz dz

)
dx

=

∫ a

0

∫ b

0

(∫ ∞
0

e−x(y+z) dx

)
dz dy

=

∫ a

0

∫ b

0

1

y + z
dz dy

=

∫ a

0

[log(y + b)− log y] dy

=
[
(y + b) log(y + b)− y log y

]a
0

= (a+ b) log(a+ b)− a log a− b log b. (4)

An alternative method for (4) is to integrate by parts, with 1/x2 as one factor, and then

deduce the result using (2). The amount of work is comparable. The reader may care to

work through the details.

Now consider the following integrals, in which I1 is modified by the insertion of sinx

or cos x:

I5 =

∫ ∞
0

(e−ax − e−bx)sinx

x
dx,

I6 =

∫ ∞
0

(e−ax − e−bx)cosx

x
dx,

where b > a > 0. These integrals are not readily solved by either of the alternative meth-

ods mentioned for I1: they are perhaps among the best applications of the double-integral

method.

We recall the well-known integrals∫ ∞
0

e−ax sin bx dx =
b

a2 + b2
,

∫ ∞
0

e−ax cos bx dx =
a

a2 + b2
(5)
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for a > 0. Substituting (1) and applying (5), we have

I5 =

∫ ∞
0

sinx

∫ b

a

e−xy dy dx

=

∫ b

a

∫ ∞
0

e−xy sinx dx dy

=

∫ b

a

1

y2 + 1
dy

= tan−1 b− tan−1 a, (6)

and similarly

I6 =

∫ b

a

y

y2 + 1
dy = 1

2
log(b2 + 1)− 1

2
log(a2 + 1). (7)

An interesting question now presents itself. In the proof of (6), can’t we just put a = 0

and b =∞, apparently obtaining a very quick and neat proof of the “sine integral”∫ ∞
0

sinx

x
dx =

π

2
? (8)

This would amount to using (1) in the especially simple form
∫∞
0
e−xy dy = 1/x. The

problem is that there are conditions for the reversal of double integrals to be valid, even

when (unlike I3) they both converge! The proper terminology, when distinguishing between

the two possible orders of integration, is “repeated” (or “iterated”) integrals. For bounded,

continuous functions on a bounded region of the plane, all is well: the two repeated integrals

are equal. But where an unbounded integrand f(x, y) or an unbounded region is involved,

further conditions are needed. There are various ways to state these conditions (e.g. see [Ti,

p. 53–55]), but for continuous functions, the following version is sufficient: (i) both functions

delivered by the first stage of integration are continuous, and (ii) at least one of the repeated

integrals remains finite when applied to |f(x, y|. Later, to drive this point home, we will

present an example - of a quite similar type to I1 - in which the two repeated integrals exist

but are unequal.

All our repeated integrals so far have satisfied these conditions. Condition (i) is no

problem: in fact, one of the first-stage integrals is simply the original integrand. Condition

(ii) is satisfied whenever f(x, y) is non-negative and one repeated integral is finite, and (6)

and (7) are justified by reference to (2), just using the fact that | sinx| and | cosx| are not

greater than 1.

However, if we attempt (6) with [a, b] replaced by (0,∞), condition (ii) fails, because∫ ∞
0

| sinx|
∫ ∞
0

e−xy dy dx =

∫ ∞
0

| sinx|
x

dx
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is divergent. Most frustrating, when we can see that the end result is actually correct!

In fact, it is quite easy to derive the case b =∞ in (6), while retaining a > 0. Let

I7 =

∫ ∞
0

e−ax
sinx

x
dx.

Since | sinx|/x ≤ 1 for all x > 0, we have∣∣∣∣∫ ∞
0

e−bx
sinx

x
dx

∣∣∣∣ ≤ ∫ ∞
0

e−bx dx =
1

b
.

Now letting b tend to infinity in (6), we deduce that (for a > 0)

I7 =
π

2
− tan−1 a. (9)

We pause here to give a second proof of (9). This, in fact, is the example of the double-

integral method which appeared in the 1909 note [Har], where it is called “Mr. Berry’s first

proof” (by which Hardy means a proof of (8)). Instead of (1), we use the substitution

sinx

x
=

∫ 1

0

cosxy dy.

Inserting this, reversing the repeated integral and applying (5), we obtain

I7 =

∫ ∞
0

e−ax
∫ 1

0

cosxy dy dx

=

∫ 1

0

∫ ∞
0

e−ax cosxy dx dy

=

∫ 1

0

a

y2 + a2
dy

= tan−1
1

a

=
π

2
− tan−1 a.

Using the fact that | cosxy| ≤ 1, one checks easily that reversal is within the rules.

There is a companion result for cosx. Note that
∫ 1

0
sinxy dy = (1− cosx)/x. Let

I8 =

∫ ∞
0

e−ax
1− cosx

x
dx,

where a > 0. Copying the second proof of (9), we have

I8 =

∫ ∫ ∞
0

e−ax
∫ 1

0

sinxy dy dx

=

∫ 1

0

∫ ∞
0

e−ax sinxy dx dy

=

∫ 1

0

y

y2 + a2
dy

= 1
2

log(a2 + 1)− log a. (10)
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Alternatively, one can prove (10) by taking the difference between (2) and (7) and considering

the limit as b→∞.

Now let us return to the question of proving (8). We have seen how to replace b by

∞ in (6); we also need to replace a by 0. This appears plausible when expressed in the

following way: write fa(x) = e−ax sinx/x and f(x) = sin x/x. Then lima→0 fa(x) = f(x) for

each x, and we have to show that lima→∞
∫∞
0
fa(x)dx =

∫∞
0
f(x)dx. However, the pointwise

convergence of fa(x) to f(x) is nowhere near sufficient to imply this, and in fact the proof

is quite delicate. For the purpose of proving (8), it is at least equally easy to abandon (6)

and start instead with
∫ X
0

sinx
x
dx: this is the “incomplete sine integral”, Si(X). So

Si(X) =

∫ X

0

sinx

∫ ∞
0

e−xy dy dx.

Since | sinx|/x ≤ 1, we have
∫ X
0
| sinx|/x dx ≤ X, which is finite. So we are now entitled to

reverse the double integral, obtaining

Si(X) =

∫ ∞
0

∫ X

0

e−xy sinx dx dy.

Now ∫ X

0

e−xy sinx dx =
1

y2 + 1
− r(X, y),

where r(X, y) =
∫∞
X
e−xy sinx dx, hence Si(X) = π

2
− R(X), where R(X) =

∫∞
0
r(X, y) dy.

We can evaluate r(X, y) explicitly, most pleasantly by replacing sinx by eix to obtain

rC(X, y) =

∫ ∞
X

e−xyeix dx =

∫ ∞
X

e−(y−i)x dx =
e−(y−i)X

y − i
.

Since |y − i| ≥ 1 and |eiX | = 1, we have |rC(X, y)| ≤ e−Xy, hence also |r(X, y)| ≤ e−Xy and

|R(X)| ≤
∫ ∞
0

|r(X, y)| dy ≤
∫ ∞
0

e−Xy dy =
1

X
.

So Si(X) → π
2

as X → ∞, which proves (8). It must be admitted that we have lost

the beautiful simplicity of the original non-proof, but even as amended the method still

stands comparison with other methods for the sine integral (e.g. [Har], [Wa], [Lo], [Jam1]).

It has done more than just evaluate the integral: it has also established the inequality

|R(X)| ≤ 1/X, where R(X) = π
2
− Si(X), which is of some interest in its own right. (A

stronger inequality was proved in [JLM]: |R(X)| ≤ π
2
− tan−1X.)

All this flowed from the integral I5. Again, there is a corresponding result for I6. In I6,

the integrals involving e−ax and e−bx do not converge separately, but if (7) were valid with

a = 0, it would say ∫ ∞
0

(1− e−bx)cosx

x
dx = 1

2
log(b2 + 1). (11)
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By similar steps to those above, with the x-integration performed on [0, X] and the y-

integration on [0, b], one can show that (11) is indeed correct (we spare the reader the

details).

Now combining (10) and (11), with a = b = 1, we can deduce∫ ∞
0

e−x − cosx

x
dx = 0. (12)

This integral is also mentioned in [Har]. It has an interesting application. Write

E(x) =

∫ ∞
x

e−t

t
dt, C(x) =

∫ ∞
x

cos t

t
dt.

These are the “incomplete” exponential and cosine integrals. By (12),

E(x)− C(x)→ 0 as x→ 0+.

It is well known that
∫∞
0
e−t log t dt = −γ, where γ is Euler’s constant. It is not hard to

show that this fact is equivalent to the statement E(x) + log x → −γ as x → 0+. By (12),

this statement in turn is equivalent to C(x) + log x→ −γ as x→ 0+, the basic property of

the cosine integral. A more thorough discussion of these connections, and a proof of (12) by

contour integration, can be seen in [Jam1].

The method we outlined for the sine integral can be generalised to the case where x−1

is replaced by xp−1. To express the result, we need the gamma function. Recall that this is

defined, for p > 0, by

Γ(p) =

∫ ∞
0

xp−1e−x dx.

The outcome is the following pair of integrals, which are neatly analogous to this formula:∫ ∞
0

xp−1 cosx dx = Γ(p) cos 1
2
πp,

∫ ∞
0

xp−1 sinx dx = Γ(p) sin 1
2
πp (13)

for 0 < p < 1. To start, we observe that the substitution xy = t gives∫ ∞
0

y−pe−xy dy = xp−1Γ(1− p).

Where we previously substituted
∫∞
0
e−xy dy for 1/x, we now use this (perverse as it might

seem) to substitute for xp−1. The steps are essentially similar to those above, combined with

some well-known identities for the gamma function. The full proof was set out in the recent

Gazette article [Jam2], so we will not reproduce it here. Again it delivers an estimate for the

remainder: the absolute value of
∫∞
X
xp−1 sinx dx is not greater than Xp−1 itself.
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Are there alternative methods for (13)? These are also discussed in [Jam2]. For the

special case p = 1
2

(the “Fresnel integrals”), there is a rather attractive alternative proof

by Fourier series, but for general p, the only viable alternative of which I am aware is by

contour integration.

We now give the promised example showing that repeated integrals really can be un-

equal if the conditions fail. It is a slightly modified version of one in [Ti, p. 61]. Pleasingly,

it features our own integral I1.

Example. Consider the repeated integrals

J1 =

∫ 1

0

(∫ ∞
0

(ae−axy − be−bxy) dy
)
dx,

J2 =

∫ ∞
0

(∫ 1

0

(ae−axy − be−bxy) dx
)
dy,

where a > b > 0. Now ∫ ∞
0

ae−axy dy =

∫ ∞
0

be−bxy dy =
1

x
,

so J1 = 0. Meanwhile, ∫ 1

0

ae−axy dx =
[1

y
e−axy

]1
x=0

=
1

y
(1− e−ay),

so

J2 =

∫ ∞
0

1

y
(e−by − e−ay) dy.

This is exactly −I1, which we have seen equals log a − log b. Actually, for the purposes of

the example, we don’t even need to know this value: it is sufficient to observe that J2 > 0,

since e−by > e−ay for all y > 0,

A related method: differentiation under the integral sign. The method we have been

considering is closely related to the equally venerable technique of differentiation under the

integral sign. We illustrate this by our original integral I1. With b fixed, denote the integral

by F (a). Differentiate under the integral sign with respect to a: since d
da
e−ax = −xe−ax, we

obtain

F ′(a) = −
∫ ∞
0

e−ax dx = −1

a
.

Hence F (a) = c − log a for some constant c. Since F (b) = 0, we have c = log b, hence (2).

Most of our other examples (but not I3) can be translated similarly; at the end of the day, the

working is roughly equivalent. However, where unbounded functions or regions are involved,

the process of differentation under the integral sign also comes with conditions which need

to be verified (they are framed in terms of uniform convergence: see [Ti, p. 59]).
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Final remark. There are, of course, other ways in which a double integral is used in

the evaluation of a single integral. For example, in one of the standard methods for the

probability integral, the given integral is squared, forming a double integral that can be

solved more easily. Our theme in this article has been restricted to the tactic of introducing

a double integral by expressing part of the integrand as an integral.
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