Zero-one laws for functional calculus on operator semigroups

Jonathan R. Partington (Leeds, UK)

Lancaster, September 2014

Joint work with Isabelle Chalendar (Lyon) and Jean Esterle (Bordeaux)
1. Some classical results.
2. Newer dichotomy laws.
3. Functional calculus.
We work with one-parameter families \((T(t))_{0 < t < \infty}\) in a Banach algebra \(\mathcal{A}\).

Often \(\mathcal{A}\) is the algebra of bounded linear operators on a Banach space \(\mathcal{X}\), and indeed given \(\mathcal{A}\) we can take \(\mathcal{X} = \mathcal{A}\).

As usual, a semigroup satisfies

\[
T(s + t) = T(s)T(t) \quad \text{for all } t, s > 0.
\]

We assume strong continuity for \(t > 0\) but not necessarily at \(t = 0\), that is,

the mapping \(t \mapsto T(t)x\) is continuous in norm for all \(x \in \mathcal{X}\).
An example

Consider the semigroup

$$T(t) : x \mapsto x^t$$

in $\mathcal{A} = \mathcal{X} = C[0,1]$.

Even with $T(0) \equiv 1$, we don’t have strong continuity at 0.

Note that $\| T(t) - I \| = 1$ for all $t > 0$.

Jonathan R. Partington (Leeds, UK)
Zero-one laws for functional calculus on operator semigroups
The classical zero-one law, elementary to prove:

If \(L := \limsup_{t \to 0^+} \| T(t) - I \| < 1 \), then

\[\| T(t) - I \| \to 0 \]

and hence the semigroup is uniformly continuous and so has the form \(e^{At} \) where \(A \), the generator, is bounded.

PROOF (Coulhon): The identity \(2(x - 1) = x^2 - 1 - (x - 1)^2 \) implies that

\[
2(T(t) - I) = T(2t) - I - (T(t) - I)^2,
\]

so we have \(2L \leq L + L^2 \) and thus \(L = 0 \) or \(L \geq 1 \).
Hille’s theorem

Hille (1950) had an analogous result for differentiable semigroups. Suppose that \((T(t))_{t>0}\) is an \(n\)-times continuously differentiable semigroup.

If

\[
\limsup_{t \to 0^+} \| t^n T^{(n)}(t) \| < \left(\frac{n}{e} \right)^n,
\]

then the semigroup has a bounded generator.

The usual case is \(n = 1\), when we get a \textbf{zero-1/e law}, but the argument works more generally, and these constants are sharp.
Analytic semigroups

We will also look at semigroups \((T(t))_{t \in S_\alpha}\), where \(t\) lies in a sector

\[S_\alpha := \{ z \in \mathbb{C} : |\arg z| < \alpha \} \]

for some \(0 < \alpha < \pi/2\), the semigroup being supposed to be analytic (holomorphic).

Typically we examine \(T(t)\) in \(|t| < \delta\), with \(t \in S_\alpha\).
Beurling (1970) proved that a semigroup defined on \mathbb{R}_+ has an analytic extension to some sector S_α if and only if

$$\limsup_{t \to 0^+} \| p(T(t)) \| < \sup \{ |p(z)| : |z| \leq 1 \}$$

for some polynomial p.

Kato and Neuberger (both 1970) proved that $p(z) = z - 1$ is sufficient, giving a zero-two law for analyticity, i.e., that

$$\limsup_{t \to 0^+} \| T(t) - I \| < 2$$

implies analyticity.
Mokhtari’s zero-quarter law

Suppose that the semigroup \((T(t))_{t>0}\) is bounded at the origin; then \((T(t_n))_n\) forms a bounded approximate identity in the algebra \(A\) generated by the semigroup, whenever \(t_n \to 0\).

Moreover, if

\[
\limsup_{t \to 0^+} \|T(t) - T(2t)\| < \frac{1}{4},
\]

then either \(T(t) = 0\) for \(t > 0\), or else the semigroup has a bounded generator \(A\).

Esterle and Mokhtari (2002): similar results for \(n \geq 1\), with

\[
\limsup_{t \to 0^+} \|T(t) - T((n + 1)t)\| < \frac{n}{(n + 1)^{1 + 1/n}} = \sup_{[0,1]} |x - x^{n+1}|.
\]
Quasinilpotent semigroups

Recall that a semigroup is quasinilpotent if the spectral radius satisfies $\rho(T(t)) = 0$ for all t.

Standard examples can be found in the convolution algebra $L^1(0, 1)$.

Excluding the trivial case, it then turns out that for each $\gamma > 0$ there is a $\delta > 0$ such that

$$\| T(t) - T((\gamma + 1)t)\| > \frac{\gamma}{(\gamma + 1)^{1+1/\gamma}}$$

for $0 < t < \delta$ (Esterle, 2005), an improvement on the Esterle–Mokhtari result.
Suppose that the algebra \mathcal{A} is semi-simple, so no quasinilpotent elements except 0.

Theorem (Bendaoud-Chalendar–Esterle–P., 2010). If for some $\gamma > 0$ we have

$$\rho(T(t) - T((\gamma + 1)t)) < \frac{\gamma}{(\gamma + 1)^{1+1/\gamma}}$$

for $0 < t < \delta$ (some $\delta > 0$), then \mathcal{A} is unital and we have $T(t) = e^{tA}$ for some bounded $A \in \mathcal{A}$.

In general, one can deduce similar properties of $\mathcal{A}/\text{Rad} \mathcal{A}$ (quotienting out the radical).
An easy-stated result for the half-plane \mathbb{C}_+:

Theorem (Bendaoud-Chalendar–Esterle–P., 2010). If

$$\sup_{t \in \mathbb{C}_+, |t| < \delta} \rho(T(t) - T((\gamma + 1)t)) < 2$$

then $\mathcal{A}/\text{Rad} \mathcal{A}$ is a unital algebra, and the projection of the semigroup onto it has a bounded generator.

Our aim now: look at more general expressions, and “explain” the constants.
More general expressions

Theorem (BCEP, 2010). Let \(f \) be a real linear combination of functions \(z^m \exp(-zw) \) with \(m = 0, 1, 2, \ldots \) and \(w > 0 \), such that \(f(0) = 0 \) and \(f(z) \to 0 \) as \(\Re z \to \infty \).

Let \((T(t))_{t \in S_\alpha} \) be analytic and non-quasinilpotent.

Define \(k_\alpha = \sup_{z \in S_\alpha} |f(z)|. \) If

\[
\sup_{t \in S_\alpha, |t| < \delta} \rho(f(-tA)) < k_\alpha
\]

then \(\mathcal{A}/\text{Rad} \mathcal{A} \) is unital and the projection of the semigoup has a bounded generator.
For $f(z)$ we may take $p(z)\exp(-z)$, p a suitable polynomial.

Or take combinations $\exp(-z) - \exp(-(\gamma + 1)z)$, as we did earlier.

Thus we may estimate expressions such as $t^n A^n T(t) = t^n T^{(n)}(t)$ and $T(t) - T((\gamma + 1)t)$.

In the first case

$$k_\alpha = \left(\frac{n}{e \cos \alpha}\right)^n,$$

recovering and extending the Hille result.

In the second, $k_\alpha \nearrow 2$ as $\alpha \nearrow \pi/2$.

All constants are sharp, as examples in $C[0, 1]$ show.
The methods here are largely based on complex analysis ideas.

In the quasinilpotent case we make estimates of the resolvent of A (which is an entire function).

In the non-quasinilpotent case we have Banach algebra ideas available.

In particular there are nontrivial characters $\chi : \mathcal{A} \to \mathbb{C}$.

We may check that $\chi(T(t)) = \exp(\lambda t)$ for some $\lambda \in \mathbb{C}$ and proceed from there to show that the Gelfand space $\hat{\mathcal{A}}$ is compact.
First, an analytic semigroup \((T(t))_{t \in S_\alpha} \) bounded near the origin has an extension to \(\overline{S_\alpha} \) making it strongly continuous at boundary points.

Second, if the semigroup is quasinilpotent and bounded on the half-plane \(\mathbb{C}_+ \), then it is trivial.

Indeed, if its boundary values satisfy

\[
\int_{-\infty}^{\infty} \frac{\log^+ \| T(iy) \|}{1 + y^2} < \infty,
\]

then \(T(t) = 0 \) for \(t \in \mathbb{C}_+ \) (Chalendar–Esterle-P., 2010).
We begin with semigroups on \mathbb{R}_+. If $(T(t))_{t>0}$ is uniformly bounded and strongly continuous, then we may write

$$(A + \lambda I)^{-1} = -\int_0^\infty e^{\lambda t} T(t) \, dt,$$

for $\text{Re} \, \lambda < 0$ (Bochner integral with respect to strong operator topology).

If in addition $(T(t))_{t>0}$ is quasinilpotent, then we have the above for all $\lambda \in \mathbb{C}$.
Take $\mu \in M_c(0, \infty)$, i.e., complex finite Borel measure of compact support.

Then its Laplace transform is, as usual,

$$F(s) := \mathcal{L}_\mu(s) = \int_0^\infty e^{-s\xi} \, d\mu(\xi).$$

Now we can define a functional calculus for the generator of a semigroup on \mathcal{X} by

$$F(-A)x = \int_0^\infty T(\xi)x \, d\mu(\xi) \quad (x \in \mathcal{X}).$$
Examples

The results will apply to examples with $\int_0^\infty d\mu(t) = 0$.

For instance, take $\mu = \delta_1 - \delta_2$; then

$$F(s) = e^{-s} - e^{-2s}$$

and

$$F(-tA) = T(t) - T(2t).$$

More exotic examples:

$$d\mu(t) = (\chi_{(1,2)} - \chi_{(2,3)}) (t) \, dt$$

or

$$\mu = \delta_1 - 3\delta_2 + \delta_3 + \delta_4.$$
Theorem (Chalendar–Esterle–P., 2013) Let $\mu \in M_c(0, \infty)$ be real with $\int_0^\infty d\mu(t) = 0$.

Let $(T(t))_{t>0}$ be a nontrivial strongly continuous quasinilpotent semigroup. Then there is an $\eta > 0$ such that

$$\|F(-sA)\| > \max_{x \geq 0} |F(x)| \quad (0 < s \leq \eta).$$

For complex measures we define $\tilde{F} = \mathcal{L}\mu$, so $\tilde{F}(z) = \overline{F(\overline{z})}$. Then

$$\|F(-sA)\tilde{F}(-sA)\| > \max_{x \geq 0} |F(x)|^2 \quad (0 < s \leq \eta).$$
The non-quasinilpotent case

For non-quasinilpotent semigroups there are various similar results, but they are more technical.

For example, in the case of a real measure, if there are \(t_k \to 0 \) with

\[
\|F(-t_k A)\| < \sup_{x>0} |F(x)|,
\]

then there are idempotents \(P_n \in \mathcal{A} \) (i.e., \(P_n^2 = P_n \)) such that \(\bigcup_{n=1}^{\infty} P_n \mathcal{A} \) is dense in \(\mathcal{A} \) and each semigroup \((P_n T(t)) \) has a bounded generator.
Analytic semigroups

For analytic semigroups on S_α we can replace measures by distributions.

Take $H(S_\alpha)$ to be the Frechet space of analytic functions on S_α with topology of local uniform convergence.

Now take (K_n) compact increasing, with $\bigcup_{n=1}^\infty K_n = S_\alpha$.

Our distributions are $\varphi : H(S_\alpha) \to \mathbb{C}$, such that

$$|\langle f, \varphi \rangle| \leq M \sup\{|f(z)| : z \in K_n\}$$

for some $M > 0$ and $n \geq 1$.
It’s easy to see (Hahn–Banach) that such a distribution φ can be represented by a non-unique Borel measure μ supported on K_n, i.e.,

$$\langle f, \varphi \rangle = \int_{K_n} f(\xi) \, d\mu(\xi).$$

For example,

$$\langle f, \varphi \rangle := f'(1) = \frac{1}{2\pi i} \int_C \frac{f(z) \, dz}{(z - 1)^2},$$

where C is a small circle surrounding 1.
The functional calculus

We need the **Fourier–Borel transform** of \(\varphi \), given by

\[
F(z) := \mathcal{FB}(\varphi)(z) = \langle e^{-z}, \varphi \rangle,
\]

where \(e_{-z}(\xi) = e^{-z\xi} \). Thus,

\[
F(z) = \int_{K_n} e^{-z\xi} \, d\mu(\xi).
\]

Then we define

\[
F(-A) = \langle T, \varphi \rangle = \int_{K_n} T(\xi) \, d\mu(\xi).
\]

as a Bochner integral, and independent of the choice of \(\mu \).
Theorem (CEP 2013). Take S_α for $0 < \alpha < \pi/2$, and φ induced by a symmetric measure, i.e., $\mu(S) = \overline{\mu(S)}$, supported on S_β with $0 \leq \beta < \alpha$, such that $\int_{S_\alpha} d\mu(z) = 0$. Let $F = FB(\varphi)$. If there exists $\delta > 0$ with

$$\sup_{z \in S_{\alpha - \beta}, |z| \leq \delta} \rho(F(-zA)) < \sup_{z \in S_{\alpha - \beta}} |F(z)|,$$

then $\mathcal{A}/\text{Rad}\mathcal{A}$ is unital and the quotient semigroup has bounded generator.

Note that a priori $F(-zA)$ only makes sense for $z \in \overline{S_{\alpha - \beta}}$.

Jonathan R. Partington (Leeds, UK) Zero-one laws for functional calculus on operator semigroups
The case $\beta = 0$ and A semisimple

A related result holds for the case $(T(t))_{t \in S_\alpha}$ semisimple (so no nontrivial quas-nilpotent elements).

If there exists $\delta > 0$ with

$$\sup_{0 < t \leq \delta} \| F(-tA) \| < \sup_{t > 0} |F(t)|,$$

then the semigroup has a bounded generator.

For example, $F(t) = e^{-t} - e^{-2t}$ and the sup is $\frac{1}{4}$.
Consider the “universal” example $T(t) : x \rightarrow x^t$ in $C[0, 1]$. For $F = FB(\varphi)$ it is easy to check that

$$F(-tA)(x) = F(-t \log x),$$

and

$$\rho(F(-tA)) = \|F(-tA)\| = \sup_{x > 0} F(-t \log x) = \sup_{r > 0} |F(tr)|.$$

Thus

$$\sup_{0 < t < \delta} \|F(-tA)\| = \sup_{t > 0} |F(t)|,$$

and there is no bounded generator.
1. The general analytic quasinilpotent case is harder, although the method used to \mathbb{R}_+ works, with modifications. Again it gives a lower bound on $F(-sA)$ for s near the origin if the semigroup is non-trivial.

2. Work in progress deals with multivariable functional calculus (several complex variables) and a family of commuting semigroups. One complication here is that functions of several variables can vanish on a line, e.g. $F(z_1, z_2) = z_1 - z_2$.

3. There are many other zero-one laws. Today we have restricted ourselves to estimates near the origin.
The end. Thank you.