Multi-state Models: An Overview

Andrew Titman

Lancaster University

14 April 2016
Overview

• Introduction to multi-state modelling
• Examples of applications
• Continuously observed processes
• Intermittently observed processes
• State Misclassification
Multi-state models

- Models for *event history analysis*.
 - Times of occurrence of events
 - Types of event that occurred
- Joint modelling of survival and important (categorical) time dependent covariates
- Model the *transition intensities* between states of a process
 - E.g. healthy to diseased
 - E.g. diseased to death
- Modelling onset and progression of chronic diseases
- Process usually modelled in continuous time
Example: Simple survival model

\[h(t) \]
Example: Competing risks model
Example: Progressive Illness-death model

- Healthy
 - Transition rate: $\lambda_{01}(t)$
- Ill
 - Transition rate: $\lambda_{02}(t)$
- Dead
 - Transition rate: $\lambda_{12}(t)$
Example: Outcome prediction in bone marrow transplantation

Keiding et al (2001)

O: Initially transplanted
R: Relapse
D: Die in Remission
A: Acute graft-vs-host
C: Chronic graft-vs-host
AC: Acute+Chronic gvhd
Modelling interdependence

- Standard survival data, and also competing risks data, involve patients having at most one event of interest.
- Once each subject can experience more than one event, assumptions need to be made about dependencies between events.
- Most commonly a Markov assumption is adopted, where only the current state and time govern the trajectory of the process.
- Potentially other time scales and summaries of past history may be important.
Mathematical framework

Models defined by transition intensities between states

\[\lambda_{rs}(t, \mathcal{F}_t) = \lim_{\delta t \downarrow 0} \frac{\mathbb{P}(X(t + \delta t) = s | X(t) = r, \mathcal{F}_t)}{\delta t} \]

where \(\mathcal{F}_t \) is the history, or filtration, of the process up to time \(t \).

Common assumptions

- Markov:
 \[\lambda_{rs}(t, \mathcal{F}_t) = \lambda_{rs}(t) \]

- (Homogeneous) Semi-Markov:
 \[\lambda_{rs}(t, \mathcal{F}_t) = \lambda_{rs}(t - t_r) \]

where \(t_r \) is the time of entry into current state \(r \).
• Overall survival (OS) after diagnosis of cancer is heavily influenced by an intermediate event of cancer progression

• Progression-free survival (PFS) is commonly reported in addition to overall survival in cancer trials and used as the primary endpoint in some cases
 • Defined as the minimum of time of death and time of progression

• Process of progression and survival can be represented through an illness-death multi-state model
Application: Cancer progression and survival

\begin{align*}
\lambda_0(t) & \\
\lambda_0(t) & \\
\lambda_1(t, u) &
\end{align*}
Application: Cancer progression and survival

- Appropriateness of PFS as a surrogate endpoint depends on association with OS
- Can be characterized through the transition intensities
- Often reasonable to assume $\lambda_{12}(t, u) = \lambda_{12}(u)$ e.g. clock-reset at time of
- For PFS to be a good surrogate need $\lambda_{12}(t) \gg \lambda_{02}(t)$ progression

- Also need primary effect of treatments to be on $\lambda_{01}(t)$
Model fitting

- Estimation for multi-state models with continuous observation (up to right-censoring) is quite straightforward.
- Under a Markov or semi-Markov assumption, the likelihood factorizes into periods of time at risk for each transition intensity.
- Same formulation as for left-truncated (i.e. delayed entry) survival data.
 - A patient becomes at risk of transitions out of state i from their time of entry into state i.
- Models for each transition intensity can be maximized independently, provided there are no shared parameters.
- Can be fitted using the `survival` package in R.
- Determining quantities of interest, such as transition probabilities, from the models is more challenging.
Example: Illness-death model

Patient 1 enters illness state at 968 days. Dies at 1521 days.

In counting process format would represent data as follows:

<table>
<thead>
<tr>
<th>id</th>
<th>entry</th>
<th>exit</th>
<th>from</th>
<th>to</th>
<th>event</th>
<th>transtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>968</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>968</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>968</td>
<td>1521</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Model without covariates in R:

```r
fit0 <- survfit(Surv(entry,exit,event)~strata(transtype))
```
The transition probabilities are defined as

\[P_{rs}(t_0, t_1) = P(X(t_1) = s | X(t_0) = r) \]

- Complicated function of the transition intensities
- In progressive models the transition probabilities can be written as an integral of the transition intensities with respect to the possible times of intermediate events.
- For more general Markov models, they are given by solving Kolmogorov Forward Equations (a system of differential equations)
Aalen-Johansen estimator

Under a Markov assumption, the matrix of transition probabilities of an R state multi-state model can be estimated non-parametrically using the Aalen-Johansen estimator.

$$\hat{P}(t_0, t_1) = \prod_{k: t_0 \leq t_k \leq t_1} (I + d\hat{\Lambda}_k)$$

where $d\hat{\Lambda}_k$ is an $R \times R$ matrix with (i, j) entry

$$d\hat{\Lambda}_{ijk} = \frac{d_{ijk}}{r_{ik}} \text{ for } i \neq j,$$

$$d\hat{\Lambda}_{iik} = - \sum_{j \neq i} d\hat{\Lambda}_{ijk} \text{ where } d_{ijk}: \text{ number of } i \rightarrow j \text{ transitions at } t_k,$$

$r_{ik}: \text{ number of subjects under observation in state } i \text{ at } t_k$
Covariate models

- Standard approach to incorporating covariates is to assume proportional intensities (Cox-Markov model)

\[\lambda_{rs}(t; z) = \lambda_{rs0}(t) \exp(z' \beta_{rs}) \]

- Extension of the Cox model, where the baseline intensities, \(\lambda_{rs0}(t) \), are non-parametric
- Potentially allow different \(\beta_{rs} \) for each transition intensity and hence fit separate models to each.
• In practice, may have insufficient numbers of transitions between particular states to reliably fit independent models

• Constraints possible
 • Allow common regression coefficients across transitions out of a state
 \[\beta_{rs} = \beta_r, \text{ for } s = 1, \ldots, R \]
 • Allow proportionality between transition intensities
 \[\lambda_{rs0}(t) = \lambda_{r10}(t) \exp(\theta_s), s \neq 1 \]
Having fitted a model for the effect of covariates on transition intensities, often want to also determine the transition probabilities for different covariate patterns

- This is reasonably straightforward to implement
 1. Calculate the estimates of the transition intensities for a given patient with covariates \mathbf{z} (using the Nelson-Aalen-Breslow estimator)

 $$d \hat{\Lambda}_{ijk}(\mathbf{z}) = d \hat{\Lambda}_{ijk}(0) \exp(\mathbf{z}' \hat{\mathbf{\beta}})$$

 2. Plug these into the Aalen-Johansen formula

- Procedure performed by the \textit{mstate} package in \textit{R}
- But no guarantee of a simple relationship that explains the covariate effect
 - c.f. regression of cause-specific hazards in competing risks analysis
Example: Cancer
Overall survival

- Patients with different covariates may have crossing survival curves
- e.g. if a covariate is associated with faster progression but improved survival post-progression
- Direct regression methods possible via pseudo-observations
In Health Economics, cost-effectiveness usually determined by Incremental Cost-Effectiveness Ratio (ICER):

\[
\text{ICER} = \frac{\Delta \text{Cost}}{\Delta \text{QALY}}
\]

- Quality Adjusted Life Years (QALY) is an estimate of life expectancy weighted by health state.
- A multi-state model with states corresponding to the distinct health states can be built.
- QALY depends on state occupancy probabilities, \(P_{1r}(0, t) \) and the health utilities, \(u_r \), in each state \(r \).

\[
\text{QALY} = \sum_{r=1}^{R} \int_{0}^{\tau} u_r P_{1r}(0, t) \, dt
\]
Intermittently observed processes

- It is not always possible to assume that the exact time of transitions between states can be observed (up to right censoring)
- Disease status may only be diagnosable at clinic visits, leading to interval censoring.
- In addition the precise transition(s) that took place may not be known.
- Time of entry into the absorbing state (e.g. death) may still be known up to right-censoring.
Example: Cancer progression and survival

- While death will be known to the nearest day, progression is typically determined at scheduled follow-up visits.
- Leads to dual censored data.
- Almost always ignored in standard analysis, but does lead to bias (Zeng et al; 2015).
Intermittently observed
processes

- Interval censoring makes estimation more difficult, particularly non- or semi-parametric approaches
- Usually need to assume that the observation times are fixed or, if random, non-informative.
 - e.g. next clinic visit time determined at current visit and not influenced by disease progression in between.
- In the Markov case the likelihood can be expressed as a product of transition probabilities.
 Subject in states x_0, x_1, \ldots, x_m at times t_0, t_1, \ldots, t_m has likelihood
 \[
 \prod_{i=1}^{m} P_{x_{i-1}x_i}(t_{i-1}, t_i; \theta)
 \]
- Modifications needed to allow for exact times of death and when state occupied at end of follow-up is unknown.
For time homogeneous models the transition probabilities can be expressed as a matrix exponential of the generator matrix of transition intensities

\[P(t_0, t_1) = \exp(\Lambda(t_1 - t_0)) \]

where \(\Lambda \) is the \(R \times R \) matrix with \((r, s)\) entry \(\lambda_{rs} \) for \(r \neq s \) and \(\lambda_{rr} = -\sum_j \lambda_{rj} \).

- Piecewise constant transition intensities can also be accommodated straightforwardly.
- Implemented in the \textit{msm} package in \textit{R} (Jackson, 2011).
State Misclassification

- Often the underlying disease of interest is known (or assumed) to be progressive - but this is contradicted by individual patients’ sequences of states
 - Cognitive decline
 - Development of progressive chronic diseases
- Assume that the observed state at a clinic visit is subject to classification error
 - e.g. diagnosis of dementia via memory tests
 - e.g. patient undergoes a diagnostic test with < 100% sensitivity and specificity
Example: CAV in post heart-transplantation patients

4 state progressive illness-death model for development of cardiac allograft vasculopathy in post-heart transplant patients

- Diagnosis of disease status via angiogram at discrete clinic visits.
- 1972 clinic visits from 596 patients
- Angiogram potentially underdiagnoses disease
- Underlying model assumed to be homogeneous Markov
Example: CAV in post heart-transplantation patients

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Cen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1366</td>
<td>204</td>
<td>44</td>
<td>122</td>
<td>276</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>46</td>
<td>134</td>
<td>54</td>
<td>48</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4</td>
<td>13</td>
<td>107</td>
<td>55</td>
<td>26</td>
</tr>
</tbody>
</table>

- Observed transitions include some cases that contradict the assumption of a progressive disease
- Ad hoc approach: Assume true state is maximum observed up to that time
- Instead assume angiogram may misspecify disease to adjacent states

\[e_{rs} = P(O_k = s|X_k = r) \]
State Misclassification

- A multi-state Markov model observed with misclassification can be represented by a hidden Markov model (HMM).
- HMM requires important assumption that conditional on the underlying states x_1, x_2, \ldots, x_m, the observed states o_1, o_2, \ldots, o_m are independent.
 - Plausibility depends on method of diagnosis and regularity of tests.
- Likelihood can be calculated iteratively through a forward recursion:

\[
P(O_1, \ldots, O_m, X_m) = P(O_m | X_m) \sum_{X_{m-1}} P(O_1, \ldots, O_{m-1}, X_{m-1}) P(X_m | X_{m-1})
\]

\[
= e_{X_m} o_m \sum_{X_{m-1}} P(O_1, \ldots, O_{m-1}, X_{m-1}) P_{X_{m-1}X_m}(t_{m-1}, t_m)
\]
Example: CAV in post-heart-transplantation patients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Naive Markov</th>
<th>Hidden Markov</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{12}</td>
<td>0.039 (0.027, 0.057)</td>
<td>0.033 (0.021, 0.050)</td>
</tr>
<tr>
<td>λ_{14}</td>
<td>0.022 (0.017, 0.030)</td>
<td>0.021 (0.015, 0.029)</td>
</tr>
<tr>
<td>λ_{23}</td>
<td>0.199 (0.162, 0.246)</td>
<td>0.190 (0.143, 0.252)</td>
</tr>
<tr>
<td>λ_{24}</td>
<td>0.041 (0.023, 0.075)</td>
<td>0.053 (0.029, 0.099)</td>
</tr>
<tr>
<td>λ_{34}</td>
<td>0.146 (0.116, 0.184)</td>
<td>0.155 (0.120, 0.201)</td>
</tr>
<tr>
<td>$\beta_{12}^{(IHD)}$</td>
<td>0.446 (0.185, 0.706)</td>
<td>0.520 (0.234, 0.807)</td>
</tr>
<tr>
<td>$\beta_{12}^{(dage)}$</td>
<td>0.022 (0.011, 0.033)</td>
<td>0.025 (0.013, 0.037)</td>
</tr>
<tr>
<td>ϵ_{12}</td>
<td>0.025 (0.015, 0.042)</td>
<td></td>
</tr>
<tr>
<td>ϵ_{21}</td>
<td></td>
<td>0.186 (0.123, 0.272)</td>
</tr>
<tr>
<td>ϵ_{23}</td>
<td></td>
<td>0.065 (0.038, 0.108)</td>
</tr>
<tr>
<td>ϵ_{32}</td>
<td></td>
<td>0.102 (0.051, 0.194)</td>
</tr>
</tbody>
</table>
State Misclassification

- Can also assume misclassification for processes with backwards transitions
 - e.g. (discretization of) CD4 count in patients with HIV
- Becomes more difficult to distinguish between different parts of the underlying and observation process
 - Markov assumption (vs. say semi-Markov dependence)
 - Assumption of conditional independence of observations given true states
 - Assumption of non-informative observation times
Further issues

- In some settings may have clustered multi-state processes, e.g. multiple processes from the same person
 - Either account for via shared random effects or via robust marginal analyses
- Data may have complicated sampling schemes
 - e.g. Truncation because patients only including in a study if in a given state - requires modified likelihoods to estimate population-level quantities
 - Patient initiated visit times - observation times no longer non-informative: limited methods to deal with this currently.
- Goodness-of-fit/Model diagnostics
 - Models, particularly those for intermittently observed data, often make strong assumptions. Important to assess model fit.
Conclusions

• Multi-state models are particularly useful if we want to build a model for an overall process of survival
• Potential to obtain dynamic predictions, not just marginal quantities
• Able to accommodate observational data with complex sampling, e.g. intermittent patient-specific, unequally spaced observation times.
References