The Rigidity of Graphs on a Flexible Torus

Elissa Ross

Department of Mathematics and Statistics
York University

Thursday July 15, 2010

Rigidity of Frameworks and Applications, Lancaster University
A movie
Goal of the work

- Study infinite periodic frameworks, with periodic deformations
- when is such a framework *rigid*, so that its parts cannot be moved with respect to one another?

Infinite graphs present challenges:
- row rank \neq column rank
- Owen and Power, 2009, operator theory methods

We use a finite graph that captures the periodic structure of our infinite graph: *gain graphs aka voltage graphs*
Gain Graph $\langle G, m \rangle$

- directed multigraph $G = (V, E)$
- Gain assignment $m : E^+ \to \mathbb{Z}^n$
- Gain group \mathbb{Z}^n

Derived Graph G^m

- Vertices: $V \times \mathbb{Z}^n$
- Edges: $E \times \mathbb{Z}^n$
- edges determined by gains
Periodic framework $(\langle G, m \rangle, \mathbf{p})$

- **Periodic framework** $(\langle G, m \rangle, \mathbf{p})$
- $T^n = \mathbb{R}^n / \mathbb{Z}^n = [0, 1)^n$: a *fundamental region* for a tiling of n-space
Different versions of the problem in two dimensions

• When is a graph on the torus rigid?

\[(y_1(t), y_2(t))\]

\[(x(t), 0)\]

What torus?

1. **Fixed torus** fixed generators \(T_0^2\)
2. **Flexible torus**
 - allow one direction to scale. \(T_1^2\)
 - allow both generators to scale, but fix angle between them. \(T_2^2\)
 - allow full motion. \(T_3^2\)
 - other variations such as fixed area.
Periodic Infinitesimal Rigidity on \mathcal{T}_0^2

- Infinitesimal periodic motion: $u : V \rightarrow \mathbb{R}^2$ s.t.
 $$(u_i - u_j) \cdot (p_i - (p_j + m_e)) = 0 \text{ for all } e = (i, j, m_e) \in E(G, m)$$

- a framework \mathcal{F} is called infinitesimally periodic rigid if the only infinitesimal motions of the framework are infinitesimal isometries.

- The space of periodic infinitesimal motions of $(\langle G, m \rangle, p)$ is the kernel of the $|E| \times 2|V|$ periodic rigidity matrix

- \mathcal{F} is infinitesimally periodic rigid \iff $\text{Rank}(R_{\langle G, m \rangle}(p)) = 2|V| - 2$.

- (periodic) isostatic: (minimally) infinitesimally rigid, $|E| = 2|V| - 2$
• “Almost all" $p : V \rightarrow T^2$ are (periodic) generic.
Gain Assignments and Rigidity

- What gain assignments m fail to produce rigid frameworks for any embedding p?

\begin{align*}
(0, 1) & \quad (1, 0) \\
(1, 0) & \quad (0, 1)
\end{align*}

infinitesimally flexible

infinitesimally rigid
Gain Assignments and Rigidity

- What gain assignments m fail to produce rigid frameworks for any embedding p?

Proposition

Let $\langle G, m \rangle$ be a gain graph with gain group \mathbb{Z}^2, and $|E| = 2|V| - 2$. If $\langle G, m, p \rangle$ is infinitesimally rigid for any embedding p, then for all subgraphs $\langle G', m' \rangle \subseteq \langle G, m \rangle$ with $|E'| = 2|V'| - 2$, there is a cycle with non-zero net gain.

- Call a gain assignment m satisfying this condition *constructive*.

![Inf. rigid and inf. flexible graphs](image)
Constructive Gains Determine Rigidity on \mathcal{T}_0^2

Theorem

Let $\langle G, m \rangle$ be a gain graph satisfying

(i) $|E| = 2|V| - 2$ and $|E'| \leq 2|V'| - 2$ for all $G' \subseteq G$,

(ii) $m : E^+ \to \mathbb{Z}^2$ is constructive.

Then $(\langle G, m \rangle, p)$ is infinitesimally periodic rigid for any generic embedding p.

- Proof uses periodic inductive constructions on the gain graph $\langle G, m \rangle$:

 - **Vertex addition:**
 - **Edge splits:**
Example

- Example: $|V| = 2, |E| = 2$
 - constructive gain assignment \Rightarrow gains are not equal

- avoid non-generic embeddings p

Elissa Ross (York University) The Rigidity of Graphs on a Flexible Torus
Theorem

For a multigraph \(G = (V, E) \), the following are equivalent:

(i) \(G \) is the union of 2 edge-disjoint spanning trees

(ii) \(G \) satisfies \(|E| = 2|V| - 2 \) and every (induced) subgraph \(G' \subset G \) satisfies \(|E'| \leq 2|V'| - 2 \) (Tutte, Nash-Williams, 1961)

(iii) for some gain assignment \(m \) and some embedding \(p \), the framework \(\mathcal{F} = (\langle G, m \rangle, p) \) is periodic isostatic on \(T_0^2 \) (Whiteley, 1988)

(iv) \(G \) can be constructed from a single vertex by a sequence of periodic vertex 2-additions and edge 2-splits

(v) for all constructive gain assignments \(m \) and for all generic embeddings \(p \), \(\mathcal{F} = (\langle G, m \rangle, p) \) is periodic isostatic on \(T_0^2 \)
The $2|V| - 2$ pebble game algorithm can be modified to check for infinitesimal rigidity on the fixed torus.

That is, we can check any gain graph $\langle G, m \rangle$ for rigidity as a periodic framework.
Corollary: The cylinder

- finite (not periodic) infinitesimal rigidity of frameworks on a flat cylinder (geodesic distance) has the same characterization as T_0^2, when we allow the gain group to be just \mathbb{Z}.

- periodic cylinder frameworks with fixed fundamental region have the same characterization with the gain group \mathbb{Z}^2.
The Flexible Torus

infinitesimally rigid on torus with fixed generators:

\[|E| = 2|V| - 2 \]

want to more accurately model frameworks like the Kagome lattice:

\[|E| = 2|V| \]

• Start by allowing one of the generators of the torus to scale: \(T_x^2 \)
• Rigidity matrix: add one column for the flexible generator \(x(t) \)
• We require \(|E| = 2|V| - 1 \) edges.
A full characterization for generic rigidity on \mathcal{T}_x^2.

Flexible torus with one degree of freedom: \mathcal{T}_x^2 is fixed in the y-direction, variable in the x-direction.

Theorem

Let $\langle G, m \rangle$ be a gain graph with $|E| = 2|V| - 1$. Then $\langle G, m \rangle$ is generically isostatic on \mathcal{T}_x^2 if, and only if it satisfies:

1. Any pair of spanning trees is generically infinitesimally rigid as a graph on the fixed torus \mathcal{T}_0^2.

2. G admits a decomposition into two edge disjoint connected, spanning subgraphs: a tree and a map-graph, in which the cycle part of the map-graph is x-constructive.

map-graphs:
T-gains

- **T-gains**: tool to make cycles in a graph more accessible.
 - preserves rank of rigidity matrix

\[
\langle G, m \rangle \quad \langle G, m_T \rangle
\]

\[
\begin{align*}
(1, 0) & \quad (0, 1) \\
(0, 0) & \quad (0, -1)
\end{align*}
\]

- graph isomorphism between \(G^m\) and \(G^m_T\)
- not an affine transformation
- same rigidity properties
Corollary: Periodic frameworks on the cylinder

- The results on \mathcal{T}_x^2 also characterize periodic frameworks with flexible fundamental region on a cylinder. *(fixed circumference)*

- OR: frameworks (not periodic) on a cylinder of flexible circumference

LaTeX code:
```
\begin{itemize}
    \item The results on $\mathcal{T}_x^2$ also characterize periodic frameworks with flexible fundamental region on a cylinder. *(fixed circumference)*
    
    \begin{center}
        \includegraphics[width=0.5\textwidth]{cylinder.png}
    \end{center}

    flexible period

    \item OR: frameworks (not periodic) on a cylinder of flexible circumference
    
    \begin{center}
        \includegraphics[width=0.5\textwidth]{cylinder2.png}
    \end{center}

    flexible circumference
\end{itemize}
```
The (More) Flexible Torus

infinitesimally rigid on torus with variable x-generator:

\[|E| = 2|V| - 1 \]

- Allowing both of the generators of the torus to scale: T_2^2
- Rigidity matrix has a column for both flexible generators $x(t)$ and $y(t)$
- We require $|E| = 2|V|$ edges.
The Flexible Torus \mathcal{T}_2^2: Examples

$|E| = 2|V|$

$\langle G, m \rangle$

G^m inf. rigid

$\langle G, m \rangle$

G^m inf. flexible

inf. motion
Necessary conditions for generic rigidity on \mathcal{T}_2^2

- $|E| = 2|V|$ and $|E'| \leq 2|V'|$ for all subgraphs $G' \subset G$.

\Leftrightarrow The edges have a decomposition into two spanning map-graphs.

Bases of the bicircular matroid on the edges of G

- Two connected spanning map-graphs: one x-constructive, one y-constructive.
Further questions

Ongoing projects:
- Algorithms for checking conditions for flexible torus
- Higher dimensions
- Bar-body frameworks: have a rigidity matrix, some necessary conditions, some sufficient conditions

Still more questions:
- Symmetry adapted periodic results.
- Discrete scaling of fundamental region...
- Global rigidity on the torus, tensegrity frameworks on the torus
- Non-periodic frameworks?
- Extension to other metrics
Scaling the fundamental region

Under what conditions will discrete scaling of the fundamental region of a periodic framework maintain its *generic* rigidity properties?

![Diagram showing inf. rigid, inf. flexible, and inf. rigid regions with arrows and coordinates](image)
Lemma

Let \(\langle G, m \rangle \) be a gain graph with \(|E| = n|V| - n \), and gain group \(\mathbb{Z}^n \). If \(\langle G, m \rangle, p \) is infinitesimally rigid for any embedding \(p \), then every subgraph \(G' \subseteq G \) with \(|E'| = n|V'| - n \) has a local gain group isomorphic to either \(\mathbb{Z}^{(n-1)} \) or \(\mathbb{Z}^n \).