Peter Neal's Publications


  1. Ball, F.G. and Neal, P.J. (2002) A general model for stochastic SIR epidemics with two levels of mixing. Math. Biosci. 180 , 73-102.

  2. Neal, P.J. (2003) SIR epidemics on a Bernoulli random graph. J. Appl.Prob. 40 , 779-782.

  3. Ball, F.G. and Neal, P.J. (2003) The great circle epidemic model. Stoch. Proc. Appl. 107 , 233-268.

  4. Ball, F.G. and Neal, P.J. (2004) Poisson approximations for epidemics with two levels of mixing. Ann. Prob. 32 , 1168-1200.

  5. Neal, P.J. and Roberts, G.O. (2004) Statistical inference and model selection for Hagelloch data set. Biostatistics 5 , 249-261.

  6. Neal, P.J. (2005) Compound Poisson limits for household epidemics. J. Appl. Prob. 42 , 334-345.

  7. Neal, P.J. and Roberts, G.O. (2005) A case study in non-centering for data augmentation: Stochastic epidemics. Stats. and Computing. 15 , 315-327.

  8. Neal, P.J. and Roberts, G.O. (2006) Optimal Scaling for partially updating MCMC algorithms. Ann. Appl. Prob. 16 , 475-515.

  9. Neal, P.J. (2006a) Multitype randomised Reed-Frost epidemics and epidemics upon random graphs. Ann. Appl. Prob. 16 , 1166-1189.

  10. Neal, P.J. (2006b) Stochastic and deterministic analysis of SIS household epidemics. Adv. Appl. Prob. 38 , 943-968.

  11. Neal, P.J. and Subba Rao, T. (2007) MCMC for integer valued ARMA processes. J. Time Series. Anal. 28 92-110.

  12. Neal, P.J. (2007) Coupling of two SIR epidemic models with variable susceptibility and infectivity. J. Appl. Prob. 44 , 41-57.

  13. Ball, F.G. and Neal, P.J. (2008) Network epidemic models with two levels of mixing. Math. Biosci. 212 , 69-87.

  14. Neal, P.J. and Roberts, G.O. (2008) Optimal Scaling for Random Walk Metropolis on spherically constrained target densities. Methodology and Computing in Applied Probability. 10 277-297.

  15. Neal P.J. (2008) The SIS Great Circle Epidemic model. J. Appl. Prob. 45 , 513-530.

  16. Neal, P.J. (2008) The generalized Coupon collector problem. J. Appl. Prob. 45 , 621-629.

  17. Enciso-Mora, V., Neal, P.J. and Subba Rao, T. (2009) Efficient order selection algorithms for integer valued ARMA processes. J. Time Series. Anal. 30 1-18.

  18. Jewell, C.P., Kypraios, T., Neal, P.J. and Roberts, G.O. (2009) Bayesian Analysis for Emerging Infectious Diseases. Bayesian Analysis 4 , 465-496.

  19. Enciso-Mora, V., Neal, P.J. and Subba Rao, T. (2009) Integer valued AR processes with explanatory variables. Sankhya, Ser. B. 71 , 248-263

  20. Ball, F. and Neal, P. (2010) Applications of branching processes to the final size of SIR epidemics. Proceedings of the "Workshop on Branching Processes and Their Applications". pp. 209-225.

  21. Britton, T. and Neal, P. (2010) The time to extinction for an SIS-household-epidemic model. J. Math. Biol. 61 , 763-779

  22. Neal, P.J. and Roberts, G.O. (2011) Optimal Scaling of random walk Metropolis algorithms with non-Gaussian proposals. Methodology and Computing in Applied Probability. 13 583-601.

  23. Neal, P. (2012) The probability of extinction of a dynamic epidemic model. Math. Biosci. 236 , 231-235

  24. Neal, P.J., Roberts, G.O. and Yuen, W.K. (2012) Optimal Scaling of Random Walk Metropolisalgorithms with discontinuous target densities. Annals of Applied Probability. 22 , 1880-1927

  25. Neal, P.J. (2012) Efficient likelihood-free Bayesian Computation for household epidemics. Stats. and Computing. 22 , 1239-1256

  26. Wei, Y., Neal, P., Telfer, S. and Begon,M. (2012) Statistical analysis of an endemic disease from a capture-recapture experiment. J. Appl. Stat. 39 , 2759-2773

  27. Haegeman, B., Hamelin, J., Moriarty, J., Neal, P., Dushoff, J. and Weitz, J.S.(2013) Robust estimation of microbial diversity in theory and in practice. ISME 7 , 1092-1101

  28. Neal, P. (2014) Endemic behaviour of SIS epidemics with general infectious period distributions. Adv. Appl. Prob. 46 , 241-255.

  29. Xiang, F. and Neal, P. (2014) Efficient MCMC for temporal epidemics via parameter reduction. Comp. Stat. and Data Anal. 80 , 240-250.

  30. Neal, P. and Kypraios, T. (2015) Exact Bayesian inference via data augmentation. Stats. and Computing 25 333-347

  31. Neal, P. and Huang, C.L.T. (2015) Forward Simulation MCMC with applications to stochastic epidemic models. Scan. J. Statist. 42 378-396.

  32. Ball, F.G., Britton, T. and Neal, P. (2016) On expected durations of birth-death processes, with applications to branching processes and SIS epidemics. J. Appl. Prob. 53 203-215.

  33. Neal, P. (2016) A household SIR epidemic model incorporating time of day effects. J. Appl. Prob. 53 489-501.

  34. Neal, P. and Xiang, F. (2017) Collapsing of non-centered parameterised MCMC algorithms with applications to epidemic models. Scan. J. Statist. 44 81-96.

  35. Kypraios, T., Neal, P. and Prangle, D. (2017) A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation Math Biosci. 287 42-53.

  36. Ball, F. and Neal, P. (2017) The asymptotic variance of the giant component of configuration model random graphs. Annals of Applied Probability. 27 1057-1092.

  37. Lee, C. and Neal, P. (2016) Optimal scaling of the independence sampler: Theory and Practice. To appear in Bernoulli

  38. Touloupou, P., Alzahrani, N., Neal, P., Spencer, S. and McKinley, T.J. (2017) Efficient model comparison techniques for models requiring large scale data augmentation. To appear in Bayesian Analysis

Return to Research Page