Some Considerations Regarding the Use of Amino Acid Racemization in Human Dentine as an Indicator of Age at Death

1,3Carolan, V.A., 2Gardner, M.L.G., 1Lucy, D. and 1Pollard, A.M.

1Department of Archaeological Sciences, University of Bradford, Bradford BD7 1DP, UK

2Department of Biomedical Sciences, University of Bradford, Bradford BD7 1DP, UK

3Current address: Department of Chemistry, Sheffield Hallam University, Pond Street, Sheffield S1 1WB, UK.

Abstract

An HPLC method is described for simultaneously obtaining the enantiomeric ratio of three amino acids (aspartic acid, serine and glutamic acid) from dental collagen, with a view to using this information for estimating age at death. Results are reported from a sample of twenty three known age modern teeth, six known age 19th C. AD teeth, and two unknown age Romano-British teeth. It was found (as expected) that all three D/L ratios changed significantly with chronological age. Standard calibration techniques were used to estimate ages for the six 19th C. AD specimens from regression equations estimated from the modern specimens, and also to predict (for the first time) the error associated with such estimates. Errors using aspartic acid were found to be similar to those obtained by other methods of age estimation from dental evidence, serine and glutamic acid providing much poorer age estimates. Additionally, a systematic difference in the age-enantiomeric ratio relationship was observed between modern and older dental samples. It is concluded that there is some fundamental difference in the observed enantiomeric ratios between modern teeth and older samples, possibly as a result of the chemical alteration of the dental proteins.

Keywords

Amino acid racemization, aspartic acid, serine, glutamic acid, age at death, error estimation, collagen, dental, HPLC, chemical alteration, protein
Introduction

It is well known that in certain proteins, such as those found in the eye lens [1], in dental tissue [2, 3], in parts of the brain [4] and in vertebral discs [5] a slow amino acid racemization reaction takes place *in vivo*. This reaction proceeds throughout the lifetime of the host (and also after death, but probably at a reduced rate as a result of a presumed reduction in ambient temperature) and hence, in recent samples at least, the degree of racemization can be related to the chronological age at death of the host. Previous work has shown that the D/L ratio of aspartic acid from human dental collagen can give a good measure of age at death for modern individuals (and also in some forensic cases), but is less reliable for archaeological samples, even if relatively recent (18th Century AD) [6].

Several groups of workers have used the racemization of aspartic acid in dental collagen and in other tissue for the estimation of age at death of recent individuals [5, 7-14]. In all cases, the method has relied on the use of a ‘calibration curve’ derived from known-age modern material to determine the rate constant of the racemization procedure, followed by the use of this information to produce an age estimate on one or more ‘unknown’ samples. Details of the calibration method vary - some workers plot ln\((1+(D/L))/(1-(D/L))\) against age, others plot %D-asp against age. Some calculate the racemization constant explicitly, others use the plotted data simply to ‘read off’ the value of predicted age from a measurement made on an unknown. What is, however, common to all published work is a lack of discussion of the statistical uncertainty associated with such age estimations. Estimates are invariably given as point estimates of age, without any consideration of the associated error. Although in some applications it may be sufficient to give an approximate age estimate in order, for example, to pinpoint the identification of known missing persons, in general it is necessary to know the exact distribution of the errors around the point estimate - especially if palaeodemographic information is required.

We have been interested for some time in the use of age estimation techniques from dental observations, and, in particular, in the correct calculation of the errors associated with such methods [15-17]. We have also been working on the use of measurements of aspartic acid racemization for the estimation of age at death [6, 18-21]. We have now brought together these two strands of research to estimate for the first time the errors associated with the aspartic acid racemization method. Whilst
undertaking this research, we have observed a systematic variation in the relationship between age and extent of racemization of amino acids in dental collagen extract from modern and archaeological samples which cannot be explained simply by additional post-mortem racemization. It must, we believe, reflect a fundamental difference in the racemization behaviour of proteins in these two environments.

Materials and Methods

Sampling Procedures

From our previous experience and published data, we concluded that use of the same type of tooth throughout would reduce errors in estimation of the exact age of dentine, since it eliminates systematic variation due to different developmental rates for different teeth. Considerations of dental physiology and typical archaeological dentitions led to the conclusion that the use of upper (left and right) first pre-molars was most appropriate. The effect of caries was also considered: due to the possibility of contamination by amino acids from bacteria and the formation of secondary dentine at carious sites, it was decided to avoid carious samples where possible. Where it was impossible to avoid the use of carious or filled teeth, sampling was carried out with extreme care to avoid inclusion of any contaminated material.

As dentine is formed from crown to root in a series of concentric cones over a number of years, it is expected that an age gradient should be observed from crown to root. Preliminary investigations, taking 1mm horizontal sections from crown to root of a single tooth, after mechanically removing the secondary dentine, gave no evidence for such a gradient (Table 1). This is consistent with observations by other workers, although the more refined sampling procedure employed by Saleh et al. [22] revealed a difference between primary and secondary (plus tertiary) dentine. For our purposes, it was decided, however, that rather than using a whole tooth (as often used by other workers), a horizontal slice ~1mm thick should be taken at approximately the crown/root junction, just above the pulp chamber. Enamel is removed by a reproducible demineralization method (see below), and any pulp or secondary dentine present is mechanically removed with a scalpel and forceps, prior to hydrolysis of the primary dentine.

Demineralization Protocol
1. Remove any adhering organic matter from tooth surface by washing in water, followed by immersion in sodium hypochlorite (12% free Cl) (Fisons, Loughborough, UK) for at least one hour. Rinse tooth thoroughly in water to remove all sodium hypochlorite and keep frozen at -18°C until required.

2. Dry tooth to constant weight in a vacuum desiccator over phosphorus pentoxide.

3. Place tooth in a universal sample tube with 20ml 1M HCl (Fisons, Loughborough, UK). Seal tube and place on a roller. Allow demineralization to proceed at room temperature, with constant rolling, for 36 hours.

4. Remove tooth from solution and rinse thoroughly with HPLC grade water (Alpha Q water system, Millipore, UK).

5. Section tooth with microtome blade and forceps, to obtain a horizontal section approximately 1mm in thickness from the crown/root junction. Ensure any secondary dentine or pulp material is removed.

6. Place section in universal sample tube with 20ml fresh 1M HCl, seal tube and place on roller for a further 12 hours.

7. Remove section from HCl, rinse thoroughly with HPLC grade water. Divide section into the required number of samples and weigh. Dry samples to constant weight in a vacuum desiccator.

8. Weigh samples and proceed with hydrolysis.

Hydrolysis Protocol

1. Place demineralized, dried, weighed sample in Pyrex test tube. Add 500µl 6M HCl (Fisons, Loughborough, UK).

2. Freeze tube containing sample and HCl in solid CO₂ and alcohol mixture, and allow to thaw to remove dissolved oxygen.

3. Repeat freezing, then allow to thaw whilst evacuating to about 50 μm Hg pressure. Seal tube after thawing is complete and whilst still under vacuum.

4. Place in heating block at 110°C for 9 hours.

5. Open tube and dry sample down in a vacuum desiccator containing NaOH pellets and phosphorus pentoxide.

6. Reconstitute samples in 500µl HPLC grade water, mix thoroughly and allow to stand for at least 2 hours prior to centrifuging and filtering samples (0.22 µm syringe filter).

7. Store samples at 4°C until analysis.

Simultaneous Measurement of the Enantiomeric Ratio of Several Dental Amino Acids
Previous methods of measuring amino acid racemization have usually involved separation of the amino acid of interest (usually aspartic acid) by ion exchange chromatography, followed by derivatization and analysis by either GC or occasionally HPLC. Although these techniques appear to have been successful it was considered that the ability to measure several amino acid ratios in the same sample should enhance the accuracy of the estimate of age at death. A method which involved derivatization of the amino acids with a chiral reagent, prior to separation by RP-HPLC, has now been investigated. This involved the use of O-phthalaldehyde and N-isobutyryl-L- or D-cysteine (OPA/IBLC or OPA/IBDC) as the derivatizing reagent and a gradient mobile phase system of methanol/acetonitrile and sodium acetate buffer. The method had been shown previously to be applicable to complicated amino acid mixtures such as those from food protein samples [23]. This previous work used a fluorescence detector but, because of the relatively large samples available from our dental collagenous proteins, we found that UV detection provided adequate sensitivity in this case.

Protocol for HPLC Analysis of Amino Acid Enantiomers, Derivatized with O-phthalaldehyde/N-isobutyryl-L- or D-cysteine (OPA/IBLC, OPA/IBDC)

Derivatization Method

1. Dissolve 260mM \(N\)-isobutyryl-L- or -D-cysteine (IBLC or IBDC) (Fluka Chemicals, Switzerland) with 170mM O-phthalaldehyde (OPA) (Sigma Chemicals, Poole, Dorset) in 1M potassium borate buffer, pH 10.4 (“Fluoraldehyde” reagent, Pierce, Rockford, IL, USA) to give IBLC/OPA or IBDC/OPA reagent respectively.

2. Place 25µl 0.4M sodium borate buffer, pH 10.4 (Hewlett-Packard, Waldbronn, Germany) in a microvial. Add 5µl IBLC/OPA or IBDC/OPA, followed by 10µl amino acid sample. Mix reagents twice using the autoderivatization program of ISS 200 Perkin Elmer autosampler, and allow the reaction mixture to stand for two minutes before analysis.

Preparation of Mobile Phases:

Eluent A: Dissolve 6.26g sodium acetate trihydrate (HPLC grade, Fisons, Loughborough, UK) in 1980ml HPLC grade water (Alpha Q water system, Millipore, UK). Adjust pH to 6.2 by addition of 10% (v/v) acetic acid (Fisons, Loughborough, UK) and make up to 2 litres with water. Filter through 0.45µm filter (Millipore, UK).

Eluent B: Add 600ml methanol (HPLC grade, Fisons, Loughborough, UK) to 50ml acetonitrile (HPLC grade, Fisons, Loughborough, UK).

Helium is passed constantly through the eluents during preparation to facilitate degassing, and eluents are kept under a positive pressure of helium.

Chromatographic Conditions

Instrument:
Column: 250mm x 4.0mm Hypersil ODS (5µm) Shandon column, preceded by a 10mm x 4mm guard column packed with the same material (Shandon Scientific, Runcorn, UK.).
Mobile Phase: Linear gradient 0-57% B over 80 minutes.
Eluent A: 23mM sodium acetate solution;
Eluent B: 600:50 methanol:acetonitrile.
Injection Volume: 20µl derivatized amino acid
Flow rate: 1.0 ml/min
Calibration Procedure

Standards of individual amino acids (Sigma Chemicals, Poole, Dorset) were run under the specified chromatographic conditions to obtain exact retention times for each of the expected dental amino acids. 0.02M solutions of the amino acids were prepared in 0.1M HCl (Fisons, Loughborough, UK).

Peak areas were calculated for each eluted peak using the automatic integration facility of the Perkin Elmer Nelson integrator. % D-amino acid was calculated thus: \(\%D\)-amino acid = 100 \(\times \) (D-amino acid peak area / (D-amino acid peak area + L-amino acid peak area)).

To allow calculation of absolute quantities of amino acids separated, an internal standard was added to each amino acid sample (of known concentration) prior to derivatization. Equal volumes of sample and 0.02M homo-arginine (Sigma Chemicals, Poole, Dorset) were mixed thoroughly and then subjected to the derivatization and analysis procedures detailed above. When it was necessary to calculate absolute quantities of amino acids each set of peak areas was normalised to the peak area of the internal standard. This allowed comparison between samples as well as calculation of absolute values.

Results

A large collection of freshly extracted modern human teeth of known age at extraction has been built up through the co-operation of a number of dentists. This has allowed the analysis in triplicate of 23 upper first premolars, with a donor age range of 11 - 72 years. Triplicate samples were obtained by taking three separate aliquots from the dental hydrolysate which were then derivatized and analysed independently.

Measurement of peak areas for the D- and L- enantiomers of aspartic acid, glutamic acid and serine allowed the calculation of the percentages of D- and L-amino acids for each of the tooth samples.

Initially it was decided to treat each of the three measurements of D-aspartic acid, D-serine, and D-glutamic acid as replicate independent observations, giving 69 data points for each amino acid (Table 2). Age was regressed as \(x \) against \(\ln\{(1+(D/L))/(1-(D/L))\} \) for each amino acid as \(y \). For each regression both pure error and lack of fit were calculated. A straight line model was used, since theory suggests that this relationship should be linear [24], but there was a significant lack of fit for all three amino acids (the smallest lack of fit being for aspartic acid, \(F = 4.35, P < 0.001 \), see Table 3). No other model (e.g., quadratic and higher, logarithmic, exponential) could be found which did not display significant lack of fit. The initial assumption, i.e., that the three measurements for each specimen were independent replicates, was therefore
rejected. The failure to find a regression model which did not display significant ‘lack of fit’ was in this case because the component of variance ascribed to ‘pure error’ was very small compared to that component of the variance attributed to ‘lack of fit’. This is because in this case the three separate aliquots from each dental hydrolysate were in effect just three measurements for the same tissue, all variation in D and L ratios being entirely due to derivatization and HPLC runtime variation. This is consistent with the observation that repeat runs can, according to Draper and Smith [25, p. 37] ‘wrongly detect non-existent lack of fit’ if the repeat runs do not in fact meet rather stringent criteria as to what constitutes an independent replicate measurement. It is suggested that to guarantee independence of measurement for an individual separate hydrolysates from separate teeth be employed, and that separate aliquots from the same hydrolysate only be used as a measure of preparation and instrumental error.

It was therefore decided to regress of the means of $\ln\{(1+(D/L))/(1-(D/L))\}$ as the ‘best’ single measure as y (giving 23 data points per amino acid), against age as x, and use the three complimentary calibration curves relating $\ln\{(1+(D/L))/(1-(D/L))\}$ for each amino acid to estimate age for unknown specimens. In all cases, for the modern teeth, there was no evidence for a significant deviation from a linear model, and, in view of the theoretical relationship discussed above, a linear model was therefore accepted.

The analysis of variance tables for the regression of $\ln\{(1+(D/L))/(1-(D/L))\}$ against age for aspartic acid, serine, and glutamic acid from modern dental tissue are presented in Table 4 (see Figure 1-3). All three amino acids displayed gradients which were significantly different from zero, but the increase in $\ln\{(1+(D/L))/(1-(D/L))\}$ glutamic acid is minimal over the age range investigated. This is to be expected due to the slower rate of racemization of glutamic acid [26]. Both aspartic acid and serine show an accumulation of D-enantiomer of several percent over the age range studied.

Age estimates were made from six teeth, from six different individuals of known age and date of burial from the crypt of St. Barnabas church, West Kensington, London, and two teeth from two unspecified individuals of Romano-British origin. These estimates, and their associated errors are presented in Table 5. Estimates of age were calculated from the inverse regression equation as advocated by Lucy and Pollard [15] using the slopes and intercepts listed in Table 4 and the following equation:
\[\hat{x}_i = \frac{\left\{1 + \frac{D/L}{1 - D/L}\right\}}{b} - \hat{a} \]

Estimates of associated error were calculated from the equation as given in Miller and Miller [27: p.90-94]:

\[\hat{S}_{x_i} = \frac{\hat{S}_y}{b} \sqrt{\frac{1}{n} + \frac{1}{b^2} \left(\sum (x_i - \bar{x})^2\right)} \]

where:

\(\hat{b} \) = estimate of the slope \(x \) on \(y \)
\(\hat{a} \) = estimate of the intercept \(x \) on \(y \)
\(\hat{x}_i \) = estimate of age for the unknown tooth
\(x_i \) = age for the \(i^{th} \) tooth
\(y_i \) = \(\ln\{1 + (D/L)/(1 - D/L)\} \) for the unknown tooth for which age is being estimated
\(\bar{x} \) = mean of ages in the reference sample
\(\bar{y} \) = mean of \(\ln\{1 + (D/L)/(1 - D/L)\} \) for teeth in the reference sample
\(\hat{S}_{x_i} \) = estimated error for the \(i^{th} \) \(x \) (age) estimate
\(\hat{S}_y \) = estimate of the standard deviation \(y \) on \(x \)

Because six of the unknown individuals from St. Barnabas church were of known age it was possible to calculate the true error between the age estimate and that known age.

Discussion

Using the modern calibration curves to estimate age at death of the ‘ancient’ (in this case, early 19th C. AD) samples shows some relationship between estimated and actual age (in this case known), but significant systematic discrepancies are apparent. There is a marked tendency for young individuals to have estimated ages which are too old, and older individuals to have estimated ages which are too young, as seen in Figure 4. Although similar tendencies have been attributed to the regression procedure itself, this ‘bias’ is removed by using an inverse regression procedure (as discussed in Aykroyd *et al.* unpublished observations), and the discrepancies observed here are not therefore believed to arise from problems of calibration. Moreover, this observation is
consistent with previous measurements on other archaeological samples. If the lines of regression for values of \(\ln\{(1+(D/L))/(1-(D/L))\} \) for aspartic acid and serine from 19th C. samples are calculated in exactly the same way as was done for modern specimens, a different regression line is estimated, and it is clear that highly significant differences exist between the gradients calculated for modern and 19th C. specimens (see Table 6 and Figures 1-3). This suggests that the estimated slopes of the regression equations for aspartic acid and serine are significantly smaller for the 19th C. specimens, and the intercepts significantly larger, giving regression lines which are not parallel [28 p.98].

It is recognised that the number of ‘ancient’ teeth reported here is too small to draw definitive conclusions about differences in measured racemization between modern and ‘ancient’ samples. In a previous study [6], we measured \%D-aspartic acid in 16 modern dental samples and 46 (largely) 18th Century specimens from the vaults of Christ Church, Spitalfields [29], although the sample preparation and measurement protocols were different from those described here, and therefore the two sets of data may not be directly comparable. We have therefore plotted separately \(\ln\{(1+(D/L))/(1-(D/L))\} \) aspartic acid against age for these samples (Figure 5). Again, the regression equations for the modern and 18th Century specimens were highly significantly different (see Table 6), with the 18th Century samples displaying a similar lower slope and higher intercept as seen in the St. Barnabas material above. Comparison of Figures 1 and 5 show that both these sets of data, obtained from different skeletal collections, and measured by different chromatographic techniques, show very similar patterns of behaviour when compared with modern data.

The fact that the regression lines for modern and ‘ancient’ measured enantiomeric ratios against age for aspartic acid (and serine) are not parallel, and in fact appear to intersect at an age within a normal human lifespan, suggests that the difference is not simply due to an additional component of the enantiomeric ratio accumulating at a different rate post-mortem. If this were the case, then we would expect the ‘ancient’ line to lie uniformly above that of the modern samples, and it could not therefore explain the observation that in older individuals the observed enantiomeric ratio is actually less in ‘ancient’ samples than in modern teeth.

We can suggest several possibilities for the cause of this observation, but none are as yet tested. We know that the demineralization and hydrolysis procedures employed
to release the amino acids from the mineralized collagen for enantiomeric assay
induce a small degree of additional racemization. It is assumed that, under strictly
controlled conditions, this is constant for all samples, and simply has the effect of
introducing a small positive constant offset into the regression curve. Our
observations above could suggest that this may not be the case when modern and
‘ancient’ collagens are treated identically. It is possible that the ‘ancient’ collagen
extract responds differently to the extraction procedure, resulting in a different degree
of induced racemization to that experienced by modern collagen. This might be the
case if the ‘ancient’ collagen were already partially degraded before extraction began.
A second possibility stems from the fact that we, like most other workers in this field,
do not characterise the collagen extract before hydrolysis, and cannot therefore be
sure that the material we are hydrolysing is pure collagen. If, during the post-mortem
period, cross-linking reactions were to occur between the acid insoluble collagenous
protein and some of the normally acid soluble molecules present in dentine which
might contain faster racemizing amino acid residues, then the resulting unpurified
collagen extract might have enhanced enantiomeric ratios compared with extracts
from modern collagen of the same age. This model cannot, however, fully explain the
observations, since it does not account for the lower enantiomeric ratio in older
individuals. Other explanations are also possible, and it is likely that some
combination is necessary. It is known that the measured enantiomeric ratio for amino
acids in various molecular size fractions of proteins extracted from fossil shells shows
a significant variation, suggesting that the rate of racemization depends on the
molecular weight distribution of the extracted protein [30]. All of these possibilities
must be further investigated before the age of ‘ancient’ individuals can be reliably
estimated by calibration against curves derived from modern samples, and might
suggest that the enantiomeric ratio derived from mineralized collagen samples might
depend on the exact state of the collagen before processing begins.
Conclusions

We believe that this work supports two principal conclusions, one regarding the magnitude of the error associated with the age estimation using amino acid racemization techniques on dental collagen, and the other on the comparability of measurements made on modern and ‘ancient’ material. Reliable though amino acid age estimation techniques may appear to be, when errors are properly taken into account through a statistically rigorous calibration, it can be seen that the method produces a substantial expected error, in this case averaging around 7.5 years about the mean estimated values, at the 68% level of confidence (1 standard deviation). Although apparently large, this average error is in fact slightly smaller than that calculated for the best of the morphological methods applied to dental samples [16]. We must conclude that no method of age estimation from dental observations can truly be regarded as precise - it would probably be safe to apply a ± 15 year error margin (95% confidence) to any age estimate produced from aspartic acid racemization measurements on dental collagen. We can also conclude that, of the three amino acids quantified in this work (aspartic acid, serine and glutamic acid), only aspartic acid provides age estimations which are comparable with morphological methods.

Perhaps the most significant observation is the systematic difference between the regression equations obtained from modern and 18th/19th C. AD specimens. The observed accumulation of both D-aspartic acid and D-serine seems to be systematically different between modern and ‘ancient’ samples of the same age, the differences for aspartic acid being seen in two different sets of data, from two different crypts, prepared and measured in two different ways. This must raise questions about the use of amino acid age estimation on older material (both forensic and archaeological), if the method is calibrated against modern measurements without any further understanding of the effect of the degradation of collagen on the observed amino acid enantiomeric ratios. It should be noted, however, that the systematic differences between estimated and ‘true’ ages produced by the non-concordance of the two regression lines does not influence the size of the estimated error discussed above, and the conclusion drawn about the error estimate applicable to amino acid racemization age determinations will also apply to regressions carried out using modern material as the unknown.
Acknowledgements

The authors would like to acknowledge the help of Dr. Sue Black and Dr. Louise Scheuer for donating the St. Barnabas skeletal remains to the Department of Archaeological Sciences, University of Bradford. We are grateful to the following dental practitioners: G. Jackson, W. Hart and J. Rees, N. Dobson, S.A. Hamburg, J. Wright, D. Palmer, R. Palmer, D.H. Marshall, D.M. Crane, M.A. Speight and M. Adamson, for the provision of modern extracted teeth. We gratefully acknowledge Dr. Charlotte Roberts, Calvin Wells Laboratory, Department of Archaeological Sciences, University of Bradford, for the provision of Romano-British specimens, and an anonymous reviewer for their helpful comments. This work was supported in part by the Natural Environment Research Council (grant GR3/09591). One of the authors (D.L.) gratefully acknowledges the support of the British Academy for the provision of a research studentship.
References

Captions for Figures:

Figure 1. Plot of \(\ln\{(1+(D/L))/(1-(D/L))\}\) aspartic acid against age with 95% confidence bands for St. Barnabas (19th C.) and modern dental samples.

Figure 2. Plot of \(\ln\{(1+(D/L))/(1-(D/L))\}\) serine against age with 95% confidence bands for St. Barnabas (19th C.) and modern dental samples.

Figure 3. Plot of \(\ln\{(1+(D/L))/(1-(D/L))\}\) glutamic acid against age with 95% confidence bands for St. Barnabas (19th C.) and modern dental samples.

Figure 4. Plot of known age against true error in estimated age for aspartic acid and serine for six 19th Century specimens. (Estimated age obtained by using the modern data as a calibration curve for the 19th C. samples. True error is difference between estimated age and known age).

Figure 5. Plot of \(\ln\{(1+(D/L))/(1-(D/L))\}\) aspartic acid with regression lines depicted for 18th C. specimens (Spitalfields) and modern specimens.

Captions for Tables:

Table 1. %D-aspartic acid found in dental hydrolysates produced from 1mm sections of a canine tooth, sample 1 being the root tip and 11 the crown. See text for preparation protocols.

Table 2. Triplicate measurements of \(\ln\{(1+(D/L))/(1-(D/L))\}\) for all specimens used in the study with the exception of those featured in Figure 5.

Table 3. Analysis of variance table age \((x)\) regressed against \(\ln\{(1+(D/L))/(1-(D/L))\}\) aspartic acid \((y)\) from modern specimens, treating each measurement as a repeat measurement.

Table 4. Analysis of variance tables and regression data for age \((x)\) against \(\ln\{(1+(D/L))/(1-(D/L))\}\) aspartic acid, serine, and glutamic acid, considering the means of triplicate measurements as the 'best' single measure.

Table 5. Results from the calibration of 19th Century specimens from St. Barnabas against known modern specimens using aspartic acid, serine, and glutamic acid.

Table 6. Significance tests for regression parameters between amino acids from ancient and modern dental specimens.
Figure 1

Figure 2
Figure 3

![Graph showing ln (1+D/L)/(1-D/L) glutamic acid vs. known age of extraction or death (years).]

- 19th Century sample
- St. Barnabas
- Modern specimen

Figure 4

![Graph showing known age minus estimated age vs. known age of extraction or death (years).]

- Aspartic acid
- Serine
Figure 5

![Graph showing ln((1+D/L)/(1-D/L)) against known age of extraction or death (years) with data points for modern specimens and 18th-19th Century specimens from Spitalfields.]
Table 1

<table>
<thead>
<tr>
<th>Position</th>
<th>Sample</th>
<th>%D-aspartic acid</th>
<th>Standard deviation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>root tip</td>
<td>1</td>
<td>5.6</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.8</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7.1</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.0</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6.2</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8.9</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.9</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10.2</td>
<td>2.6</td>
</tr>
<tr>
<td>crown</td>
<td>11</td>
<td>6.3</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Tooth Number</th>
<th>Condition</th>
<th>Known age (years)</th>
<th>D/L aspartic acid 1</th>
<th>D/L aspartic acid 2</th>
<th>D/L aspartic acid 3</th>
<th>D/L serine 1</th>
<th>D/L serine 2</th>
<th>D/L serine 3</th>
<th>D/L glutamic acid 1</th>
<th>D/L glutamic acid 2</th>
<th>D/L glutamic acid 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E180A</td>
<td>non-carious</td>
<td>11</td>
<td>0.059</td>
<td>0.021</td>
<td>0.021</td>
<td>0.011</td>
<td>0.009</td>
<td>0.010</td>
<td>0.011</td>
<td>0.008</td>
<td>0.009</td>
</tr>
<tr>
<td>224(1)A</td>
<td>non-carious</td>
<td>11</td>
<td>0.052</td>
<td>0.027</td>
<td>0.027</td>
<td>0.018</td>
<td>0.018</td>
<td>0.018</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>224(2)A</td>
<td>non-carious</td>
<td>11</td>
<td>0.031</td>
<td>0.031</td>
<td>0.031</td>
<td>0.017</td>
<td>0.016</td>
<td>0.015</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>57A</td>
<td>non-carious</td>
<td>13</td>
<td>0.052</td>
<td>0.029</td>
<td>0.029</td>
<td>0.012</td>
<td>0.010</td>
<td>0.010</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>88(i)A</td>
<td>non-carious</td>
<td>15</td>
<td>0.056</td>
<td>0.029</td>
<td>0.029</td>
<td>0.011</td>
<td>0.011</td>
<td>0.012</td>
<td>0.009</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>88(2)A</td>
<td>non-carious</td>
<td>15</td>
<td>0.059</td>
<td>0.029</td>
<td>0.029</td>
<td>0.012</td>
<td>0.013</td>
<td>0.012</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>65A</td>
<td>non-carious</td>
<td>18</td>
<td>0.031</td>
<td>0.029</td>
<td>0.029</td>
<td>0.012</td>
<td>0.014</td>
<td>0.012</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>67A</td>
<td>non-carious</td>
<td>18</td>
<td>0.031</td>
<td>0.031</td>
<td>0.031</td>
<td>0.012</td>
<td>0.013</td>
<td>0.012</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>E078A</td>
<td>restoration</td>
<td>23</td>
<td>0.030</td>
<td>0.029</td>
<td>0.029</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>E083A</td>
<td>caries</td>
<td>25</td>
<td>0.039</td>
<td>0.031</td>
<td>0.031</td>
<td>0.022</td>
<td>0.023</td>
<td>0.022</td>
<td>0.009</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>E172A</td>
<td>caries</td>
<td>29</td>
<td>0.035</td>
<td>0.032</td>
<td>0.032</td>
<td>0.020</td>
<td>0.022</td>
<td>0.017</td>
<td>0.009</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>E212A</td>
<td>caries</td>
<td>30</td>
<td>0.039</td>
<td>0.036</td>
<td>0.038</td>
<td>0.019</td>
<td>0.018</td>
<td>0.019</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>E194A</td>
<td>caries-restoration</td>
<td>35</td>
<td>0.040</td>
<td>0.036</td>
<td>0.039</td>
<td>0.024</td>
<td>0.022</td>
<td>0.023</td>
<td>0.008</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>15A</td>
<td>caries</td>
<td>38</td>
<td>0.042</td>
<td>0.040</td>
<td>0.040</td>
<td>0.023</td>
<td>0.026</td>
<td>0.023</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>E056A</td>
<td>caries-restoration</td>
<td>43</td>
<td>0.038</td>
<td>0.036</td>
<td>0.035</td>
<td>0.027</td>
<td>0.025</td>
<td>0.022</td>
<td>0.009</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>64A</td>
<td>non-carious</td>
<td>46</td>
<td>0.045</td>
<td>0.046</td>
<td>0.048</td>
<td>0.022</td>
<td>0.021</td>
<td>0.022</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>E003A</td>
<td>caries</td>
<td>47</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
<td>0.020</td>
<td>0.026</td>
<td>0.026</td>
<td>0.010</td>
<td>0.011</td>
<td>0.010</td>
</tr>
<tr>
<td>E191A</td>
<td>restoration</td>
<td>47</td>
<td>0.044</td>
<td>0.046</td>
<td>0.046</td>
<td>0.026</td>
<td>0.024</td>
<td>0.024</td>
<td>0.008</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>68A</td>
<td>non-carious</td>
<td>49</td>
<td>0.046</td>
<td>0.049</td>
<td>0.049</td>
<td>0.017</td>
<td>0.024</td>
<td>0.022</td>
<td>0.008</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>121A</td>
<td>restoration</td>
<td>60</td>
<td>0.049</td>
<td>0.047</td>
<td>0.047</td>
<td>0.024</td>
<td>0.024</td>
<td>0.023</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>150A</td>
<td>caries</td>
<td>62</td>
<td>0.053</td>
<td>0.056</td>
<td>0.055</td>
<td>0.029</td>
<td>0.028</td>
<td>0.028</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
</tr>
<tr>
<td>115A</td>
<td>restoration</td>
<td>69</td>
<td>0.046</td>
<td>0.047</td>
<td>0.047</td>
<td>0.022</td>
<td>0.026</td>
<td>0.027</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>14A</td>
<td>caries-restoration</td>
<td>72</td>
<td>0.060</td>
<td>0.055</td>
<td>0.055</td>
<td>0.028</td>
<td>0.027</td>
<td>0.028</td>
<td>0.012</td>
<td>0.012</td>
<td>0.011</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>Sum of squares</th>
<th>Mean square</th>
<th>F ratio</th>
<th>Source</th>
<th>d.f.</th>
<th>Sum of squares</th>
<th>Mean square</th>
<th>F ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>0.1959</td>
<td>0.1959</td>
<td></td>
<td>Residual</td>
<td>67</td>
<td>0.0000</td>
<td>0.0000</td>
<td>4.35</td>
</tr>
<tr>
<td>Residual</td>
<td>67</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td>Lack of fit</td>
<td>46</td>
<td>0.0024</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Pure error</td>
<td>46</td>
<td>0.0006</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>Sum of squares</th>
<th>Mean square</th>
<th>F ratio</th>
<th>Source</th>
<th>d.f.</th>
<th>Sum of squares</th>
<th>Mean square</th>
<th>F ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartic acid</td>
<td>Regression</td>
<td>1</td>
<td>0.000530</td>
<td>0.000530</td>
<td>171.41</td>
<td>0.000680</td>
<td>Source d.f.</td>
<td>Sum of squares</td>
<td>Mean square</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>21</td>
<td>0.000000</td>
<td>0.000000</td>
<td></td>
<td>Source d.f.</td>
<td>Sum of squares</td>
<td>Mean square</td>
<td>F ratio</td>
</tr>
<tr>
<td>Serine</td>
<td>Regression</td>
<td>1</td>
<td>0.002040</td>
<td>0.002040</td>
<td>27.82</td>
<td>0.000422</td>
<td>Source d.f.</td>
<td>Sum of squares</td>
<td>Mean square</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>21</td>
<td>0.000003</td>
<td>0.000003</td>
<td></td>
<td>Source d.f.</td>
<td>Sum of squares</td>
<td>Mean square</td>
<td>F ratio</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>Regression</td>
<td>1</td>
<td>0.000020</td>
<td>0.000020</td>
<td>6.00</td>
<td>0.000053</td>
<td>Source d.f.</td>
<td>Sum of squares</td>
<td>Mean square</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>21</td>
<td>0.000003</td>
<td>0.000003</td>
<td></td>
<td>Source d.f.</td>
<td>Sum of squares</td>
<td>Mean square</td>
<td>F ratio</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Year of Death</th>
<th>Known age</th>
<th>In(1+DAc-1)</th>
<th>calibrated age</th>
<th>error on calibration</th>
<th>In(1+DAc-2)</th>
<th>calibrated age</th>
<th>error on calibration</th>
<th>real error</th>
<th>In(1+DAc-3)</th>
<th>calibrated age</th>
<th>error on calibration</th>
<th>real error</th>
<th>In(1+DAc-4)</th>
<th>calibrated age</th>
<th>error on calibration</th>
<th>real error</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW1A</td>
<td>Roman, British</td>
<td>unknown</td>
<td>47.30</td>
<td>7.19</td>
<td>0.06</td>
<td>66.28</td>
<td>10.02</td>
<td>0.03</td>
<td>202.26</td>
<td>70.62</td>
<td>0.04</td>
<td>147.21</td>
<td>158.33</td>
<td>0.02</td>
<td>137.64</td>
<td>109.99</td>
<td>0.02</td>
</tr>
<tr>
<td>CW2A</td>
<td>Roman, British</td>
<td>unknown</td>
<td>54.13</td>
<td>7.38</td>
<td>0.07</td>
<td>108.14</td>
<td>22.18</td>
<td>0.04</td>
<td>147.21</td>
<td>158.33</td>
<td>0.04</td>
<td>147.21</td>
<td>158.33</td>
<td>0.04</td>
<td>147.21</td>
<td>158.33</td>
<td>0.02</td>
</tr>
<tr>
<td>WK6A</td>
<td>1853</td>
<td>15</td>
<td>42.38</td>
<td>7.17</td>
<td>0.04</td>
<td>56.60</td>
<td>19.04</td>
<td>0.02</td>
<td>167.63</td>
<td>59.84</td>
<td>0.02</td>
<td>167.63</td>
<td>59.84</td>
<td>0.02</td>
<td>167.63</td>
<td>59.84</td>
<td>0.02</td>
</tr>
<tr>
<td>WK11A</td>
<td>1832</td>
<td>38</td>
<td>44.19</td>
<td>7.19</td>
<td>0.04</td>
<td>36.84</td>
<td>7.75</td>
<td>0.03</td>
<td>170.64</td>
<td>60.75</td>
<td>0.03</td>
<td>170.64</td>
<td>60.75</td>
<td>0.03</td>
<td>170.64</td>
<td>60.75</td>
<td>0.03</td>
</tr>
<tr>
<td>WK12A</td>
<td>1831</td>
<td>51</td>
<td>44.94</td>
<td>7.43</td>
<td>0.08</td>
<td>34.98</td>
<td>7.36</td>
<td>0.03</td>
<td>192.98</td>
<td>54.67</td>
<td>0.02</td>
<td>192.98</td>
<td>54.67</td>
<td>0.02</td>
<td>192.98</td>
<td>54.67</td>
<td>0.02</td>
</tr>
<tr>
<td>WK17A</td>
<td>1839</td>
<td>64</td>
<td>55.57</td>
<td>7.27</td>
<td>0.05</td>
<td>56.50</td>
<td>19.04</td>
<td>0.02</td>
<td>167.63</td>
<td>59.84</td>
<td>0.02</td>
<td>167.63</td>
<td>59.84</td>
<td>0.02</td>
<td>167.63</td>
<td>59.84</td>
<td>0.02</td>
</tr>
<tr>
<td>WK30A</td>
<td>1839</td>
<td>71</td>
<td>68.14</td>
<td>7.50</td>
<td>0.06</td>
<td>61.30</td>
<td>19.51</td>
<td>0.03</td>
<td>169.90</td>
<td>60.35</td>
<td>0.03</td>
<td>169.90</td>
<td>60.35</td>
<td>0.03</td>
<td>169.90</td>
<td>60.35</td>
<td>0.03</td>
</tr>
<tr>
<td>WK31A</td>
<td>1826</td>
<td>81</td>
<td>68.10</td>
<td>7.50</td>
<td>0.06</td>
<td>61.30</td>
<td>19.51</td>
<td>0.03</td>
<td>170.96</td>
<td>60.95</td>
<td>0.03</td>
<td>170.96</td>
<td>60.95</td>
<td>0.03</td>
<td>170.96</td>
<td>60.95</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table 6

<table>
<thead>
<tr>
<th>Source of dentine</th>
<th>Amino acid</th>
<th>slope_d</th>
<th>slope_r</th>
<th>t</th>
<th>d.f.</th>
<th>probability</th>
<th>intercept_d</th>
<th>intercept_r</th>
<th>t</th>
<th>d.f.</th>
<th>probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Barnabas</td>
<td>Aspartic</td>
<td>0.0039</td>
<td>0.0030</td>
<td>1.27</td>
<td>25,000</td>
<td>0.0001</td>
<td>0.0454</td>
<td>0.0001</td>
<td>0.0037</td>
<td>25,000</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>Serine</td>
<td>0.0036</td>
<td>0.0030</td>
<td>1.27</td>
<td>25,000</td>
<td>0.0001</td>
<td>0.0337</td>
<td>0.0001</td>
<td>0.0037</td>
<td>25,000</td>
<td>0.0001</td>
</tr>
<tr>
<td>Spitalfields</td>
<td>Aspartic</td>
<td>0.0039</td>
<td>0.0030</td>
<td>1.27</td>
<td>25,000</td>
<td>0.0001</td>
<td>0.0454</td>
<td>0.0001</td>
<td>0.0037</td>
<td>25,000</td>
<td>0.0001</td>
</tr>
</tbody>
</table>