The Frullani integrals
Notes by G.J.O. Jameson

We consider integrals of the form

\[I_f(a, b) = \int_0^\infty \frac{f(ax) - f(bx)}{x} \, dx, \]

where \(f \) is a continuous function (real or complex) on \([0, \infty)\) and \(a, b > 0 \). The basic theorem is as follows. I do not know many books or articles where proofs are given: two references (for which I am grateful to Nick Lord) are [Fer, p. 134–135] and [Tr].

FRU1 THEOREM. Consider the following conditions:

(C1) \(f(x) \to c_0 \) as \(x \to 0^+ \);
(C2) \(f(x) \to c_\infty \) as \(x \to \infty \);
(C3) there exists \(K \) such that \(|F(x)| \leq K \) for all \(x > 0 \), where \(F(x) = \int_0^x f(t) \, dt \).

Under conditions (C1) and (C2), we have

\[I_f(a, b) = (c_0 - c_\infty)(\log b - \log a). \tag{1} \]

Under conditions (C1) and (C3), we have

\[I_f(a, b) = c_0(\log b - \log a). \tag{2} \]

Proof. We may assume that \(b > a \): interchanging \(a \) and \(b \) then gives the case \(b < a \).

Let \(0 < \delta < X \). The substitution \(ax = y \) gives

\[\int_\delta^X \frac{f(ax)}{x} \, dx = \int_{a\delta}^{aX} \frac{f(y)}{y} \, dy. \]

So

\[\int_\delta^X \frac{f(ax) - f(bx)}{x} \, dx = \int_{a\delta}^{aX} \frac{f(y)}{y} \, dy - \int_{b\delta}^{bX} \frac{f(y)}{y} \, dy = I(\delta) - I(X), \]

where, for any \(r > 0 \),

\[I(r) = \int_{ar}^{br} \frac{f(y)}{y} \, dy. \]

Let \(\varepsilon > 0 \) be given. Under condition (C1), there exists \(\delta_0 > 0 \) such that if \(0 < y \leq b\delta_0 \), then \(|f(y) - c_0| \leq \varepsilon \). Then for \(\delta \leq \delta_0 \), we have \(I(\delta) = c_0(\log b - \log a) + r_1(\delta) \), where

\[r_1(\delta) = \int_{a\delta}^{b\delta} \frac{f(y) - c_0}{y} \, dy, \]
hence \(|r_1(\delta)| \leq \varepsilon (\log b - \log a)\). So \(I(\delta) \to c_0(\log b - \log a)\) as \(\delta \to 0^+\).

In exactly the same way, condition (C2) implies that \(I(X) \to c_\infty(\log b - \log a)\) as \(X \to \infty\).

Under condition (C3), integration by parts gives

\[
I(X) = \left[\frac{F(y)}{y} \right]_a^b X + \int_a^b \frac{F(y)}{y^2} \, dy,
\]

hence

\[
|I(X)| \leq \frac{2K}{aX} + K \int_a^b \frac{1}{y^2} \, dy < \frac{3K}{aX},
\]

so \(I(X) \to 0\) as \(X \to \infty\). (Of course, this also shows that \(\int_1^\infty \frac{f(x)}{x} \, dx\) converges; this statement could be taken as the hypothesis instead of (C3)). \(\square\)

We record a number of particular examples which are transparently cases of (1) or (2), without repeatedly writing out the integral expressions:

- \(f(x) = e^{-x}\), \(I_f(a, b) = \log b - \log a\)
- \(f(x) = e^{-x^2}\), \(I_f(a, b) = \log b - \log a\)
- \(f(x) = \frac{1}{1 + x^2}\), \(I_f(a, b) = \log b - \log a\)
- \(f(x) = \cos x\), \(I_f(a, b) = \log b - \log a\)
- \(f(x) = e^{-x} \cos x\), \(I_f(a, b) = \log b - \log a\)
- \(f(x) = \tan^{-1} x\), \(I_f(a, b) = \frac{\pi}{2} (\log a - \log b)\)
- \(f(x) = \tanh x\), \(I_f(a, b) = \log a - \log b\)

Among these examples, \(\cos x\) is the only one satisfying (C3), but not (C2). Of course, the first three examples satisfy both.

Next, we state a simple extension of the Theorem.

FRU2. Let \(F(x) = \sum_{j=1}^n m_j f(a_j x)\), where \(a_j > 0\) for \(1 \leq j \leq n\) and \(\sum_{j=1}^n m_j = 0\). If \(f\) satisfies (C1) and (C2), then

\[
\int_0^\infty \frac{F(x)}{x} \, dx = - (c_0 - c_\infty) \sum_{j=1}^n m_j \log a_j.
\]

(3)

If \(f\) satisfies (C1) and (C3), the same applies with \(c_\infty\) replaced by 0.

Proof. Write \(M_j = m_1 + \cdots + m_j\). By Abel summation,

\[
F(x) = \sum_{j=1}^{n-1} M_j [f(a_j x) - f(a_{j+1} x)].
\]
By (1),
\[\int_0^\infty \frac{F(x)}{x} \, dx = -\sum_{j=1}^{n-1} M_j (\log a_j - \log a_{j+1}) = -\sum_{j=1}^n m_j \log a_j. \]

Double integral method for (1).

For monotonic \(f \), the following is an alternative method for (1) (but not (2)). It appears in some books, at least for the special case \(f(x) = e^{-x} \), e.g. [AAR, p. 27].

Note that for \(x, y > 0 \),
\[\frac{1}{y} \frac{d}{dx} f(xy) = \frac{1}{x} \frac{d}{dy} f(xy) = f'(xy). \]
Hence
\[\int_a^b f'(xy) \, dy = \left[\frac{1}{x} f(xy) \right]_{y=a}^{y=b} = \frac{f(bx) - f(ax)}{x}. \]
So, reversing the double integral, we obtain
\[-I_f(a,b) = \int_0^\infty \int_a^b f'(xy) \, dy \, dx = \int_a^b \int_0^\infty f'(xy) \, dx \, dy. \]
But
\[\int_0^\infty f'(xy) \, dx = \left[\frac{1}{y} f(xy) \right]_{x=0}^{x=\infty} = \frac{1}{y} (c_\infty - c_0). \]
So
\[-I_f(a,b) = (c_\infty - c_0) \int_a^b \frac{1}{y} \, dy = (c_\infty - c_0)(\log b - \log a). \]

Some derived integrals

We give two applications of the case \(f(x) = \cos x \). First, since \(2 \sin ax \sin bx = \cos(a - b)x - \cos(a + b)x \), we have, for \(a > b > 0 \),
\[\int_0^\infty \frac{\sin ax \sin bx}{x} \, dx = \frac{1}{2} \log \frac{a+b}{a-b}. \]
Second, since \(\sin^3 x = \frac{3}{4} \sin x - \frac{1}{4} \sin 3x \), we have
\[\int_0^\infty \frac{\sin^3 x}{x^2} \, dx = \left[-\frac{\sin^3 x}{x} \right]_0^\infty + \int_0^\infty \frac{1}{x} \left(\frac{3}{4} \cos x - \frac{3}{4} \cos 3x \right) \, dx = \frac{3}{4} \log 3. \]
Integrals of this type are discussed more generally in [Tr].

We now describe some applications of the case \(f(x) = e^{-x} \). Written out explicitly, the statement is
\[\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \, dx = \log b - \log a. \]
The substitution $x = -\log y$ transforms this to
\[
\int_0^1 \frac{y^{b-1} - y^{a-1}}{\log y} \, dy = \log b - \log a.
\]
So, for example,
\[
\int_0^1 \frac{y - 1}{\log y} \, dy = \log 2.
\]

Now consider the integral
\[
J = \int_0^\infty \frac{1}{x^2} (1 - e^{-ax})(1 - e^{-bx}) \, dx.
\]
Integration by parts gives $J = J_1 + J_2$, where
\[
J_1 = \left[-\frac{1}{x}(1 - e^{-ax})(1 - e^{-bx}) \right]_0^\infty,
\]
\[
J_2 = \int_0^\infty \frac{1}{x} \left(ae^{-ax} + be^{-bx} - (a + b)e^{-(a+b)x} \right).
\]
For $x > 0$, we have $1 - e^{-x} = \int_0^x e^{-t} \, dt < x$, from which it is clear that $J_1 = 0$. Writing the bracketed factor in J_2 as $a(e^{-ax} - e^{-(a+b)x}) + b(e^{-bx} - e^{-(a+b)x})$, we see that
\[
J = J_2 = a[\log(a + b) - \log a] + b[\log(a + b) - \log b]
= (a + b) \log(a + b) - a \log a - b \log b.
\]

Next, consider the function
\[
E(x) = \int_x^\infty \frac{e^{-t}}{t} \, dt.
\]
By reversal of the implied double integral, one sees easily that $\int_0^\infty E(x) \, dx = 1$. Now (re-using the notation J for an integral to be evaluated) let
\[
J = \int_0^\infty e^{-ax} E(x) \, dx,
\]
where $a > 0$. Reversing the double integral and applying (4), we find
\[
J = \int_0^\infty \int_x^\infty \frac{e^{-t}}{t} \, dt \, dx
= \int_0^\infty \frac{e^{-t}}{t} \int_0^t e^{-ax} \, dx \, dt
= \int_0^\infty e^{-t}(1 - e^{-at}) \, dt
= \frac{1}{a} \log(1 + a).
\]
Another application of (4) occurs in the derivation of the integral representation for the digamma function $\psi(x) = \Gamma'(x)/\Gamma(x)$ [AAR, p. 26–27].

Further examples of Frullani integrals are given in [AABM].

References

