An Introduction to Body-Bar Frameworks

Walter Whiteley

York University, Toronto, Canada

July 12, 2010
Outline

1. Why Body-Bar?
 - What are they?
 - Available Results
 - Significant Applications

2. Basic Theory
 - Definitions
 - Block Decomposition
 - Tay’s Theorem

3. Extensions
 - Body-Hinge
 - Shared End points
 - Further Extensions
What are they?

A body-bar framework - ‘rigid bodies’ in the given dimension, attached by bars with rotatable vertex attachments.
What are they?

The bodies can be replaced by isostatic frameworks on the vertices of attachment.
What are they?

The bodies can be replaced by isostatic frameworks on the vertices of attachment.

However this puts them into a harder class to analyze.
General Framework Problems in 3-space

General frameworks in 3-space do not have good characterizations.

Do not have generic, fast algorithms.
General frameworks in 3-space do not have good characterizations.

Do not have generic, fast algorithms.

Similar (and larger) problems in higher dimensions $d \geq 4$.
Available Results

For body-bar frameworks in all dimensions there are good theorems:
Available Results

For body-bar frameworks in all dimensions there are good theorems:

1. complete combinatorial characterizations;
Available Results

For body-bar frameworks in all dimensions there are good theorems:

1. complete combinatorial characterizations;
2. efficient algorithms for detecting isostatic frameworks;
Available Results

For body-bar frameworks in all dimensions there are good theorems:

1. complete combinatorial characterizations;
2. efficient algorithms for detecting isostatic frameworks;
3. inductive techniques in all dimensions;
Available Results

For body-bar frameworks in all dimensions there are good theorems:

1. complete combinatorial characterizations;
2. efficient algorithms for detecting isostatic frameworks;
3. inductive techniques in all dimensions;
4. characterization of generic globally rigid body-bar frameworks.
Available Results

For body-bar frameworks in all dimensions there are good theorems:

1. complete combinatorial characterizations;
2. efficient algorithms for detecting isostatic frameworks;
3. inductive techniques in all dimensions;
4. characterization of generic globally rigid body-bar frameworks.

Solid geometric and combinatorial theory, with historical roots and applications.
Available Results

For body-bar frameworks in all dimensions there are good theorems:

1. complete combinatorial characterizations;
2. efficient algorithms for detecting isostatic frameworks;
3. inductive techniques in all dimensions;
4. characterization of generic globally rigid body-bar frameworks.

Solid geometric and combinatorial theory, with historical roots and applications.

Growing number of people doing work within these models.
Significant Applications

For body-bar frameworks in 3-dimensions there are valuable applications:
For body-bar frameworks in 3-dimensions there are valuable applications:

1. Some standard linkages;
For body-bar frameworks in 3-dimensions there are valuable applications:

1. Some standard linkages;
2. Body-hinge structures;
For body-bar frameworks in 3-dimensions there are valuable applications:

1. Some standard linkages;
2. Body-hinge structures;
3. Extensions to macromolecules;
Significant Applications

For body-bar frameworks in 3-dimensions there are valuable applications:

1. Some standard linkages;
2. Body-hinge structures;
3. Extensions to macromolecules;
4. Control of formations of full dimensional agents.
We will write a body-bar framework as a multi-graph $G = (B, E)$ to emphasize that these are not points but isostatic bodies, and give a geometric line extensor $\tilde{e}_{i,j}$ for each directed edge.
We will write a body-bar framework as a multi-graph $G = (B, E)$ to emphasize that these are not points but isostatic bodies, and give a geometric line extensor $\tilde{e}_{i,j}$ for each directed edge. For purposes of infinitesimal rigidity, it does not matter which specific points we pick along the line, as long as they are distinct. Consider the plane models illustrated below.
We will write a body-bar framework as a multi-graph $G = (B, E)$ to emphasize that these are not points but isostatic bodies, and give a geometric line extensor $\tilde{e}_{i,j}$ for each directed edge. For purposes of infinitesimal rigidity, it does not matter which specific points we pick along the line, as long as they are distinct. Consider the plane models illustrated below. Only making the three lines collinear alters the first-order rigidity.
We will write a body-bar framework as a multi-graph $G = (B, E)$ to emphasize that these are not points but isostatic bodies, and give a geometric line extensor $\tilde{e}_{i,j}$ for each directed edge. For purposes of infinitesimal rigidity, it does not matter which specific points we pick along the line, as long as they are distinct. Consider the plane models illustrated below. Only making the three lines collinear alters the first-order rigidity.
For first-order rigidity:

1. critical properties are the projective properties of the set of lines for the bars;
For first-order rigidity:

1. critical properties are the projective properties of the set of lines for the bars;
2. In dimension 3, 6 bars are needed to attach two bodies together.
3. 6 attachments are minimal first-order rigid provided the lines are not the null lines of a screw.
4. Such a ‘screw’ is the screw center of motion of one body when the other is held fixed!
For first-order rigidity:

1. Critical properties are the projective properties of the set of lines for the bars;
2. In dimension 3, 6 bars are needed to attach two bodies together.
3. 6 attachments are minimal first-order rigid provided the lines are not the null lines of a screw.
4. Such a ‘screw’ is the screw center of motion of one body when the other is held fixed!

The constraint lines will be written in the coordinate system for lines in the space:

1. In 3-space, coordinates are 6-vectors;
For first-order rigidity:

1. critical properties are the projective properties of the set of lines for the bars;
2. In dimension 3, 6 bars are needed to attach two bodies together.
3. 6 attachments are minimal first-order rigid provided the lines are not the null lines of a screw.
4. Such a ‘screw’ is the screw center of motion of one body when the other is held fixed!

The constraint lines will be written in the coordinate system for lines in the space:

1. In 3-space, coordinates are 6-vectors;
2. called Plücker coordinates for the lines;
3. the Cayley algebra 2-extensions for the join of two points on the line $p_i \vee p_j$.
4. the exterior product of two points on the line.
One way to generate the line vector is to place the affine coordinates of the two points as rows of a matrix, and systematically take all the 2×2 minors of this matrix:

$$\mathbf{R}(G, e) = \begin{pmatrix} a_x & a_y & a_z & 1 \\ b_x & b_y & b_z & 1 \end{pmatrix}.$$

There are 6 such minors, and we need conventions for the order we list them, and which signs we take. Those details are not important for today.
One way to generate the line vector is to place the affine coordinates of the two points as rows of a matrix, and systematically take all the 2×2 minors of this matrix:

$$ \mathbf{R}(G, e) = \begin{pmatrix} a_x & a_y & a_z & 1 \\ b_x & b_y & b_z & 1 \end{pmatrix}.$$

There are 6 such minors, and we need conventions for the order we list them, and which signs we take. Those details are not important for today.

This presentation confirms that

1. reversing the order of the two points reverses the sign of the vector - these belong to ordered pairs; moving one of the points along the line
One way to generate the line vector is to place the affine coordinates of the two points as rows of a matrix, and systematically take all the 2×2 minors of this matrix:

$$\mathbf{R}(G, e) = \begin{pmatrix} a_x & a_y & a_z & 1 \\ b_x & b_y & b_z & 1 \end{pmatrix}.$$

There are 6 such minors, and we need conventions for the order we list them, and which signs we take. Those details are not important for today.

This presentation confirms that

1. reversing the order of the two points reverses the sign of the vector - these belong to ordered pairs; moving one of the points along the line
2. moving a point along the line only changes the line vector by a scalar,
One way to generate the line vector is to place the affine coordinates of the two points as rows of a matrix, and systematically take all the 2×2 minors of this matrix:

$$
\mathbf{R}(G, e) = \begin{pmatrix}
 a_x & a_y & a_z & 1 \\
 b_x & b_y & b_z & 1
\end{pmatrix}.
$$

There are 6 such minors, and we need conventions for the order we list them, and which signs we take. Those details are not important for today.

This presentation confirms that

1. reversing the order of the two points reverses the sign of the vector - these belong to ordered pairs; moving one of the points along the line

2. moving a point along the line only changes the line vector by a scalar,

In d-space, we generate a $\binom{d+1}{2}$ vector of minors of the corresponding $2 \times d$ matrix. Centers of motion are dual vectors of the same vector size.
Rigidity Matrix

In 3-space, we have such 6-vectors for the constraints and also for the centers of motion S_i for each body. The bar gives a constraint on possible centers of motion for the two bodies as a dot product of the 6-vectors.

$$(\bar{e}_{ij}) \ast (S_i) - (\bar{e}_{ij}) \ast (S_j) = 0$$

or equivalently

$$(\bar{e}_{ij}) \ast (S_i) - (S_j) = 0$$
Rigidity Matrix

In 3-space, we have such 6-vectors for the constraints and also for the centers of motion S_i for each body. The bar gives a constraint on possible centers of motion for the two bodies as a dot product of the 6-vectors.

$$(\bar{e}_{ij}) \ast (S_i) - (\bar{e}_{ij}) \ast (S_j) = 0$$

or equivalently

$$(\bar{e}_{ij}) \ast (S_i) - (S_j) = 0$$

We collect these together as the $|E| \times 6|B|$ rigidity matrix for the body-bar framework (G, \bar{E})

$$R(G, \bar{E}) = \{i, j\}$$

$$\begin{pmatrix}
0 & \cdots & 0 & \bar{e}_{ij} & 0 & \cdots & 0 & -\bar{e}_{ij} & 0 & \cdots & 0 \\
\vdots & & & & & & & & & & \\
0 & \cdots & 0 & \bar{e}_{ij} & 0 & \cdots & 0 & -\bar{e}_{ij} & 0 & \cdots & 0 \\
\vdots & & & & & & & & & & \\
\end{pmatrix}.$$
The maximum rank for the rigidity matrix is $6|B| - 6$, since there are always the trivial motions (giving the same center for every body). If we have a maximum independent set of bars, equivalently a minimal rigid set of bars, $\mathbf{R}(G, \bar{E})$ is $(6|B| - 6) \times 6B$. We can partition the columns with first columns of all bodies, then second columns, then ...

$$
\begin{bmatrix}
\vdots & \cdots & \vdots \\
0 & \cdots & (\bar{e}_{ij})_1 & \cdots & 0 \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
&&&&
\end{bmatrix}
$$
If rows are independent, then there is an non-zero $(6|B| - 6) \times (6B - 6)$ determinant (tying down a vertex).

Take a Laplace block decomposition with $|B| - 1$ square submatrices:

$$
\begin{array}{c|c|c}
\vdots & \vdots & \vdots \\
0 & (\tilde{e}_{ij})_1 & 0 \\
\vdots & \vdots & \vdots \\
0 & (\tilde{e}_{ik})_1 & 0 \\
\end{array}
\begin{array}{c|c|c}
\vdots & \vdots & \vdots \\
0 & (\tilde{e}_{ij})_6 & 0 \\
\vdots & \vdots & \vdots \\
0 & (\tilde{e}_{ik})_6 & 0 \\
\end{array}
$$
For each block, we have a copy of the line graph matrix for those edges - up to scalar multiplication by $(\bar{e}_{ij})_m$:

$$
\begin{pmatrix}
0 & \ldots & 0 & 1 & 0 & \ldots & 0 & -1 & 0 & \ldots & 0 \\
\vdots & & & & & & & \ddots & & & \\
\vdots & & & & & & & & & & \\
\end{pmatrix}
$$

This block has a non-zero determinant (with one column removed) if and only if the induced graph is a spanning tree. We conclude, there is a non-zero term in the determinant only if there are 6 edge-disjoint spanning trees.

A necessary condition for minimal rigidity is that the graph (B, E) partitions into 6 edge-disjoint spanning trees.

Note 6 $|B| - 6 = 6(|B| - 1)$ matches this edge-disjoint tree decomposition.
For each block, we have a copy of the line graph matrix for those edges - up to scalar multiplication by $(\bar{e}_{ij})_m$:

\[
\begin{pmatrix}
0 & \cdots & 0 & 1 & 0 & \cdots & 0 & -1 & 0 & \cdots & 0 \\
\vdots & & & & & & & & & & \\
\end{pmatrix}
\]

This block has a non-zero determinant (with one column removed) if and only if the induced graph is a spanning tree.

We conclude, there is a non-zero term in the determinant only if there are 6 edge-disjoint spanning trees.
Necessary Condition

For each block, we have a copy of the line graph matrix for those edges - up to scalar multiplication by \((\bar{e}_{ij})_m\):

\[
\begin{pmatrix}
i & j \\
\{i, j\} & \begin{array}{cccc}
0 & \ldots & 0 & 1 \\
\vdots & & \ddots & \vdots \\
0 & \ldots & 0 & -1 \\
\vdots & & & 0
\end{array}
\end{pmatrix}
\]

This block has a non-zero determinant (with one column removed) if and only if the induced graph is a spanning tree.

We conclude, there is a non-zero term in the determinant only if there are 6 edge-disjoint spanning trees.

A necessary condition for minimal rigidity is that the graph \((B, E)\) partitions into 6 edge-disjoint spanning trees.

Note \(6|B| - 6 = 6(|B| - 1)\) matches this edge-disjoint tree decomposition.
Necessary Condition

For each block, we have a copy of the line graph matrix for those edges - up to scalar multiplication by $(\tilde{e}_{ij})_m$:

$$
\begin{pmatrix}
i & j \\
0 & \ldots & 0 & 1 & 0 & \ldots & 0 & -1 & 0 & \ldots & 0 \\
\vdots \\
\vdots
\end{pmatrix}
$$

This block has a non-zero determinant (with one column removed) if and only if the induced graph is a spanning tree.

We conclude, there is a non-zero term in the determinant only if there are 6 edge-disjoint spanning trees.

A necessary condition for minimal rigidity is that the graph (B, E) partitions into 6 edge-disjoint spanning trees.

Note $6|B| - 6 = 6(|B| - 1)$ matches this edge-disjoint tree decomposition.
Sufficient Condition: Tays Theorem

The decomposition of the graph $G = (B, E)$ into 6 edge-disjoint trees is sufficient for some (almost all) assignments \bar{E}.
Sufficient Condition: Tays Theorem

The decomposition of the graph $G = (B, E)$ into 6 edge-disjoint trees is sufficient for some (almost all) assignments \bar{E}.

This is proven by giving one such realization, based on the 6 edges of a Tetrahedron. Assign all the edges in Tree$_1$ to one edge, and Tree$_2$ to a second edge For a special Tetrahedron, the extensors for the edges of the form $(1, 0, 0, 0, 0, 0), ... (0, 0, 0, 0, 0, 1)$

With this choice, the entire determinant above will only have the one nonzero term in the Laplace block decomposition.
Sufficient Condition: Tays Theorem

The decomposition of the graph $G = (B, E)$ into 6 edge-disjoint trees is sufficient for some (almost all) assignments \bar{E}.

This is proven by giving one such realization, based on the 6 edges of a Tetrahedron. Assign all the edges in Tree$_1$ to one edge, and Tree$_2$ to a second edge For a special Tetrahedron, the extensors for the edges of the form $(1, 0, 0, 0, 0, 0), \ldots (0, 0, 0, 0, 0, 1)$

With this choice, the entire determinant above will only have the one nonzero term in the Laplace block decomposition.

Theorem [Tay] A multi-graph $G = (B, E)$ has realizations as infinitesimally rigid body-bar frameworks if and only if the graph contains 6 edge-disjoint spanning trees.

Equivalently, if and only if there is a subgraph $G^* = (B, E^*)$ such that:

(i) $|E^*| = 6|B| - 6$;

(ii) for all subgraphs $G' = (B', E')$ of G^*, $|E'| \leq 6|B'| - 6$.
Tays Theorem

This results and the proof generalizes to all dimensions.

Theorem [Tay] A multi-graph \(G = (B, E) \) has realizations a infinitesimally rigid body-bar frameworks if an only if the graph contains \(\binom{d+1}{2} \) edge-disjoint spanning trees.

Equivalently, there is a subgraph \(G^* = (B, E^*) \) such that:

(i) \(|E^*| = \binom{d+1}{2} |B| - \binom{d+1}{2} \);

(ii) for all subgraphs \(G' = (B', E') \) of \(G^* \), \(|E'| \leq \binom{d+1}{2} |B'| - \binom{d+1}{2} \).

With this combinatorial characterization of the sparsity condition comes fast algorithms (order \(|B||E|\)), often referred to as the pebble games.

Recall there is no such fast algorithm for generic rigidity of bar and joint frameworks in 3-space (or higher dimensions).
Body-Hinge Structures

There are a number of generalizations and extensions. Consider the body-hinge frameworks.
Body-Hinge Structures

There are a number of generalizations and extensions.

Consider the body-hinge frameworks.

The hinge leaves 1 degree of freedom between the two bodies - it removes 5.
Body-Hinge Structures

There are a number of generalizations and extensions. Consider the **body-hinge** frameworks.

The hinge leaves 1 degree of freedom between the two bodies - it removes 5.

We can consider a body-hinge graph $G = (B, H)$ as a multi-graph $5G$ with 5 bars for each hinge.
Body-Hinge Theorem

This does not change the combinatorial characterization!
This does not change the combinatorial characterization!

Assume the multi-graph $5G$ contains 6 edge-disjoint spanning trees. Realize this graph with the edges of the 6 edge-disjoint spanning trees on the 6 edges of the tetrahedron.
Body-Hinge Theorem

This does not change the combinatorial characterization!

Assume the multi-graph $5G$ contains 6 edge-disjoint spanning trees. Realize this graph with the edges of the 6 edge-disjoint spanning trees on the 6 edges of the tetrahedron.

Each set of 5 bars from trees at a hinge will be on 5 of the edges of the tetrahedron. This set all meet a single line - which is used for the Hinge. Other edges not in trees are assigned to preserve the hinges.
Body-Hinge Theorem

Theorem Body Hinge Theorem [Tay, Whiteley] A Body-Hinge graph $G = (B, H)$ has realizations a infinitesimally rigid body-hinge frameworks if an only if the associated multi-graph $5G$ contains 6 edge-disjoint spanning trees.

Equivalently, there is a subgraph $5G^* = (B, E^*)$ such that:

(i) $|E^*| = 6|B| - 6$;

(ii) for all subgraph of $G' = (B', E')$ of $5G$, $|E'| \leq 6|B'| - 6$.
Body-Hinge Theorem

Theorem Body Hinge Theorem [Tay, Whiteley] A Body-Hinge graph \(G = (B, H) \) has realizations a infinitesimally rigid body-hinge frameworks if an only if the associated multi-graph \(5G \) contains 6 edge-disjoint spanning trees.

Equivalently, there is a subgraph \(5G* = (B, E*) \) such that:

(i) \(|E*| = 6|B| - 6\);

(ii) for all subgraph of \(G' = (B', E') \) of \(5G \), \(|E'| \leq 6|B'| - 6\).

Special Body-Hinge graphs come from molecules - with the covalent bonds as hinges. These have an added geometry (the hinges of the body are all concurrent).

The Molecular Theorem (formerly the Molecular Conjecture) shows that even this specialization does not change the characterization: \(5G \) contains 6 edge-disjoint spanning trees. The same fast algorithms work.
Inductive construction

There are inductive constructions for all generically rigid body-bar frameworks in d-space.

Theorem [Frank and Szego]

1. begin with a single body
2. at each further stage, do one of the two following steps:
 (i) add an extra bar;
 (ii) pinch off k edges $0 \leq k < \binom{d+1}{2}$ existing edges.
Inductive construction

There are inductive constructions for all generically rigid body-bar frameworks in d-space.

Theorem [Frank and Szego]

1. begin with a single body
2. at each further stage, do one of the two following steps:
 (i) add an extra bar;
 (ii) pinch off k edges $0 \leq k < \binom{d+1}{2}$ existing edges.

![Diagram of inductive construction](image-url)
There are inductive constructions for all generically rigid body-bar frameworks in d-space.

Theorem [Frank and Szego]

1. begin with a single body
2. at each further stage, do one of the two following steps:
 (i) add an extra bar;
 (ii) pinch off k edges $0 \leq k < \left(\frac{d+1}{2}\right)$ existing edges.

Pinching off 0 edges is attaching a new body with $\left(\frac{d+1}{2}\right)$ bars.
We have generally assumed that the end-points of the bars are distinct on the bodies.
Shared End Points

We have generally assumed that the end-points of the bars are distinct on the bodies.

In the tetrahedral proof, some edges shared end points.

In the hinge structures, 3 of the 5 bars shared end-points.
Shared End Points

We have generally assumed that the end-points of the bars are distinct on the bodies.

In the tetrahedral proof, some edges shared end points.

In the hinge structures, 3 of the 5 bars shared end-points

Question: What packages of shared endpoints preserve the generic rigidity?
Shared End Points

We have generally assumed that the end-points of the bars are distinct on the bodies.

In the tetrahedral proof, some edges shared end points.

In the hinge structures, 3 of the 5 bars shared end-points

Question: What packages of shared endpoints preserve the generic rigidity?

Some necessary conditions are known.
We have generally assumed that the end-points of the bars are distinct on the bodies.

In the tetrahedral proof, some edges shared end points.

In the hinge structures, 3 of the 5 bars shared end-points.

Question: What packages of shared endpoints preserve the generic rigidity?

Some necessary conditions are known.

The **Rigid Unit Mode (RUM)** models are an example with corner sharing tetrahedra. This is equivalent to asking that certain sets of 3 bars meet in a point.

What characterization is there for these structures?
Further Extensions

1. Generic Global Rigidity. Recall generically redundantly rigid means that removing any one edge leaves a generically rigid body-bar graph.

 Theorem Body-Bar Global Rigidity Connelly, Jordan & Whiteley
 A body-bar framework is generically globally rigid in d space if and only if it is redundantly rigid in d-space.
Further Extensions

1. Generic Global Rigidity. Recall generically redundantly rigid means that removing any one edge leaves a generically rigid body-bar graph.

Theorem Body-Bar Global Rigidity Connelly, Jordan & Whiteley
A body-bar framework is generically globally rigid in d space if and only if it is redundantly rigid in d-space.

Conjecture: This global rigidity result extends to molecular frameworks!
1. **Generic Global Rigidity.** Recall generically redundantly rigid means that removing any one edge leaves a generically rigid body-bar graph.

Theorem Body-Bar Global Rigidity Connelly, Jordan & Whiteley

A body-bar framework is generically globally rigid in d space if and only if it is redundantly rigid in d-space.

Conjecture: This global rigidity result extends to molecular frameworks!

2. **Symmetry:** The analysis of symmetry for bar and joint frameworks has been extended body-bar frameworks by Guest, Schulze and Whiteley.

3. A related analysis should apply to symmetric body hinge frameworks. For the moment, we can analyze them using the associated bar and joint frameworks G^2.
Further Extensions

1. **Generic Global Rigidity.** Recall generically redundantly rigid means that removing any one edge leaves a generically rigid body-bar graph.

 Theorem Body-Bar Global Rigidity Connelly, Jordan & Whiteley
 A body-bar framework is generically globally rigid in d space if and only if it is redundantly rigid in d-space.

 Conjecture: This global rigidity result extends to molecular frameworks!

2. Symmetry: The analysis of symmetry for bar and joint frameworks has been extended body-bar frameworks by Guest, Schulze and Whiteley.

3. A related analysis should apply to symmetric body hinge frameworks. For the moment, we can analyze them using the associated bar and joint frameworks G^2.

4. **Body-CAD structures**, with other linear or linearized constraints. E.g. Recent paper by Haller, Lee, Sitheram, Streinu & White.
Thanks
Thanks

Questions?